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General position of the talk

General problem

How to quantize a “classical spectral curve’ ([y,x] = 0)
P(x,y) =0, P rational in x, monic polynomial in y

into a linear differential equation ([/idy, x] = h):

(/3 <x,hdi)'()> ¥(x,h) =07

P rational in x with same pole structure as P.

Key ingredients

Key ingredient 1: Topological recursion [26].
Key ingredient 2: Integrable systems, Lax pairs:

hgix\ll(x, h,t) = L(x, h, t)V(x, Ak, t) h%\ll(x, h,t) = A(x, h, t)V(x, A, t)




Presentation of the problem
[e]e] lele}

Strategy of the construction

@ Define proper initial data to apply topological recursion (TR)
< Minor technical restrictions on the classical spectral curve
P(x,y) = 0: “Admissible initial data"

@ Apply TR to initial data: = Output: (whn)nn>0: “TR differentials”.

© Stack the wy, , into some “perturbative wave function” (1;(z))<_;.

Ph—2tn Oh,00n,2dx(z1)dx(z
w=en (3 Jo o ot = h&i(zf)*():()zz)§22)))

b0

= formal WKB series in /.

@ Take kind of “formal Fourier transform” to get “non-perturbative
wave functions” and regroup them into a wave matrix WNF(\; i)
= Formal trans-series in 7.

@ Prove that AO\WNFP (X h) = L(A, A)WUNF (A k) with L rational with
controlled pole structure. < “Quantum curve”.

@ Obtain auxiliary systems hd;WNF (X, h, t) = A\, h, t)WNP (X A, t)
with A rational with controlled pole structure.
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Known results and applications

@ Review on TR and quantum curves by P. Norbury [35].
o Elements of the strategy already existing in the literature
[7, 20, 22, 25, 26, 34].
@ Non-perturbative construction is not necessary for genus 0 classical
spectral curves.
@ Several examples worked out in details [16, 17, 18, 19, 29, 31, 38].
o Reverse approach also exists [2, 5, 30, 33]:
[Lax pair: (L(\, k), A(A, k) + Topological type property] =
W reconstructed by TR applied on the associated classical spectral
curve %imo det(yly — L(\, h)) = 0.
—

@ Applications in enumerative geometry
[1, 3, 4, 8, 13, 14, 21, 36, 37, 39, 27, 28].
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Summary of our results

@ Results presented following [32] for sk case (hyper-elliptic case) and
[24] for the general gl,; case. Similar works for sh case in [23].

o Connection with isomonodromic deformations only in sk case in [32].

@ Technical assumptions include
o Pole of any degree including infinity.
o Poles may be ramification points.
o Ramifications points are simple and smooth.
@ Main results: Construction of the matrix wave functions,
quantum curve and some compatible auxiliary systems with
same pole structure as the initial spectral curve.

@ Applications to two examples: gh example (recovering Painlevé 2
equation) and a g3 example with only a single pole at infinity.
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Classical spectral curve

Classical spectral curve

Let (Ag,...,Ay) be N > 0 distinct points on P!\ {oo}. Let
Ha(A1, ..., Ay, o0) be the Hurwitz space of covers x: £ — P! of degree
d defined as the Riemann surface

¥ ={(\y) [ P(\y) =0},

where x(A,y) = X and

d
PO y) =D (-1)y"'P(X) =0, Po(}) =1
1=0
with each coefficient (P;),c[1,4) being a rational function with
possible poles at \ € P == {A;}V, [ J{co}.
A classical spectral curve (X, x) is the data of the Riemann surface ©
and its realization as a Hurwitz cover of P!.

.
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Classical spectral curve with fixed pole structure

Classical spectral curve with fixed pole structure

N
For I € [1,d], let réé) and (r/(\f)) ) be some non-negative integers. We

consider the subspace
Hd ((Ah (r/(\ll));jzl)7 ©009 (/\Na (r/(\2)7:1)7 (007 (rcglo));i:l)> C 7-ld(/\h ©009 AN7 OO)

of covers x such that the rational functions (P;)_; are of the form

PN =" 3 P ep(N) K, for 1€ [1,d],

PeP kESI(,/)
where we have defined
Vie[L,N] : Sy =[LrY] and SO :=[0,rY],

and the local coordinates {{p(A\)}pcp around P € P are defined by

Vie[1,N] : ép.(N) =(A=A) and  &o(N) =21
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Canonical local coordinates and spectral times

Canonical local coordinates

Let P € P! and p € x~!(P). Canonical coordinates on P! near P are

ép(x) =x—P ifP#0c0, ep =1,
fP(X) = 1 if P= oo, €p = —1.
X

Canonical local coordinates near any p € x~1(P) are

¢o(2) = Ep(x(2))% , dp = order,(ép).

A

Spectral times (KP times)

The 1-form ydx has the following expansion:

sp—1

ydx = Z tokCp “1dCp + analytic at p.
=0

(tp.k)pex—1(P),ke]o,s,—1] are called “spectral times”.

= g =
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Ramification points and critical values

Ramification points and critical values
We denote by Ry the set of all ramification points of the cover x, and by
R the set of all ramification points that are not poles (i.e. not in

x7H(P)).
Ro:={p € /1+order,dx # +1},

R={pex/dx(p)=0, x(p)¢P}="Ro\x"'(P).

We shall refer to their images x(R) as the critical values of x.

.
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Admissible spectral curve

Admissible classical spectral curves

We say that a classical spectral curve (X, x) is admissible if it satisfies:
@ The Riemann surface ¥ defined by P(A,y) = 0 is an irreducible
algebraic curve, i.e. P()\,y) does not factorize.

@ All ramification points are simple, i.e. dx has only a simple zero at
aeR.

o Critical values are distinct: for any (a;,a;) € R x R such that
aj # aj then x(a;) # x(aj).

e Ramification points are smooth: for any a € R, dy(a) # 0 (i.e. the
tangent vector (dx(a), dy(a)) to the immersed curve
{(\,¥) | P(\,y) =0} is not vanishing at a).

e Generic ramified poles: for any pole p € x~1(P) ramified, the
1-form ydx has a pole of degree r, > 3 at p, and the corresponding
spectral times satisfy t,,, 2> # 0.
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Remarks on the technical assumptions

@ Topology of admissible spectral curves relatively to spectral times is
complicated. = Spectral times are not independent. Tangent space
and deformations hard to define for d > 3.

e Tangent space defined for d = 2 <+ Existence of deformations 0, ,.

@ Ingredients to lift some technical assumptions already exist in the
literature: simple ramification points, smooth ramification points,
reducible algebraic curves.

@ Defining properly the tangent space would allow to make the
connection with isomonodromic deformations for d > 3.

@ Last condition allows not to include ramified poles in the
residues of TR.
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Admissible initial data

Admissible initial data

Given an admissible spectral curve (X, x) of genus g, we add
e Choice of Torelli marking (A;, B;)%_,).
< Associated “Bergman” kernel (normalized fundamental second
kind differential) B(AHBi)L:
@ A generic smooth point 0 € ¥ \ x 1(P) and some choice of
non-intersecting homology chains C,_,, for each p € x~1(P)
compatible with the Torelli marking:

VpexY(P), Vie[l,g], AiNCossp =0=BiNCosyp,

These three ingredients define some “admissible initial data” on which
TR can be applied. Denoted ((X, x), (A;, Bi)%_,).

.




Classical spectral curve, TR
@00

General considerations

Initial version [26] of TR dating back to 2007 is sufficient since

ramification points are assumed simple.

@ Some generalizations of TR exist to deal with non-simple
ramification points, non-irreducible curves [6, 15].

o TR takes admissible initial data as input and provides some

TR differentials (wp n)r>0,n>0 @s output.

These differentials are computed by recursion on s = n 4+ 2h starting
from

. 8
wo,1 = des wo,2 = B(A”B/)ii%


https://en.wikipedia.org/wiki/Topological_recursion
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Definition of TR

Topological recursion

We have for h > 0, n > 0 with (h, n) ¢ {(0,0),(0,1)}:

1 f;a(z) wo,2(20, ) 2

w 20,2) = Res — z,04(z
h,n+1(20,2) 2 85 001() — rze0a @) hni1(2,0a(2)i 2),

with

W/(72r),+1(zaz/il) = who1,n42(2,2,2)

+ Z ws,jaj+1(2, A) wh_s 18141(2', B)
AUB =1z5€[0,h]
(s, |Al) ¢ {(0,0), (h, n)}

and

Who = ZReswhl (2)®(z), Vh>2

2—2h
and (wo,o,wl,o) defmed by specific formulas (See [26])




Classical spectral curve, TR
[e]e] J

Loop equations

@ Some combinations of the TR differentials have interesting
properties = “Loop equations”

e Following [7], for (h,n,[) € N3:

G = Qv = 0% () = 8h06n0:
(D)
ST > > X > 11 “’g,-,\u,-wu,-\(“w#)}
BCx—L(A)HES(B) I )J () ) i=1
=z 3 gi=h+1(1)—
i=1 i=1
() (1)
Q12 > » > > I—[l‘“gww,'IHJ;I(“"'J")
C(x—1 RES(B) I(u) () i=
BT(X (x(z))\{z}) ‘\:|1 =2 Zgl hd(p)—1
() . o= ) .
Q (Xi2) n 1 (z;iz\ {z})
o O h,n+1 _ ) Chn G il
Qpnpr(Xi2) ()] J; 9 (A x| (@)t )

Loop equations

For any (h,n,/) € N® and any z € (£ \ R)", the function \ ”#“/\(),/\—z)
has no poles at critical values.
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Generic perturbative wave functions

Perturbative wave functions

S
((X,x), (A, Bi)%_,) admissible initial data, D = Y «a;[p;] generic divisor
i=1

on Y. Perturbative wave functions associated to D are

oo EE - it

h,n>0
Vie[ls] : z/zo,,-(D,h) = (D, h),
. L Q) y (pi-
Vie[l,s], I >1: ¢ (D,h) = »(D, h).
! [;2, / / (dx(p1)) }

A

Definition as a formal power series in i times exponential terms in
finite negative powers of & (formal WKB series):

e_h*ng,oe—rfl Jo “’Dvl'gb(D, h) € (C[[h]]

A\
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KZ equations

@ Loop equations translates into Knizhnik—Zamolodchikov (KZ)

equations [7]
Generic KZ equations
For i € [1,s] and / € [0, d — 1], we have
¥1,i(D, h)

h diy (D, hi {D, k) —
f‘ﬁ’é R GRS SRR o e
o dx(p) eilgn - X)) =x(@)
h2h+n (+1)
+ Q o i)iz) ¥(D, h)
»(D, h).

Qpnsa (P -))

) [ h2h+n+1/ /D — ( (Qx(pf)),

(h,n)EN?

e Valid for generic divisors (p; not a pole or a ramification point)
e Simplification for two points divisors with (aq, ap) € {—1,+1}2.
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Remarks

KZ equations allow to obtain PDEs for ¢(D, ).
Generic divisors provide PDEs with derivatives a;fz) up to order d?

generically.

Quantum curve is expected to be of order d and not d?.
At least two specific choices of divisors allow for order d:
D=z] - [oo("“)] or D = [z] — [o(2)].

Other choices may also provide order d PDEs.
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Regularization of perturbative wave functions for

D = [2] — [0l

Infinity is a pole of the classical spectral curve = D = [z] — [00(™] is not
a generic divisor = Some quantities requires regularization from

lim ({21~ [p)

Definition of regularized wave function
wreg(D = [Z] — [c)o(a)]7 ﬁ) = exp <h—1 <Vw(“)(z) + /Z( )(ydx — dVoc(,‘))))

1 h2h_2+" z z
N7
E(z, 00(®)) dx(z)dcw(a>(oo<a>) wSayy M Jeote) oo

Y8 (D = [2] - [0 )], B) =

2h+n Q Z;Z1y- -y 2Zn
< h / / h n+1( 1 : )>¢reg(D =[] - [oo(a)],ﬁ)
n>35h0 ool@  Joole) dx(z)

v
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KZ equations for regularized wave functions

KZ equations for regularized wave functions

7111”%( = [2] — [0o{™], B) + ;55 (D = [2] — [00{¥], )

dx(z)
htn
BT S o et
isomso M PEP yeslth)
7=z z=2 thﬁl()‘ ) Pres (@)
déP(A) leoo(a) o /Zn:oo(a) W] ( [Z] [OO ]7 h)

.
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Comments and technical issue

RHS of KZ equations uses residues, i.e. integrals.

RHS may be rewritten using generalized integrals, i.e. linear

operators I .

@ Zc,, is expected to correspond to 9;,,. Valid for d = 2 and
examples.

@ Action of these operators is defined only on a sub-algebra generated

by fCl ... Jo whn. < Algebra of symbols

One need to check that these operators never act on something else.

Avoid the problematic definition on all differential forms on .
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PDE form of KZ equations

PDE form of KZ equations

d re « re a ~ reg sym @
ey V1 (oD (ool = ev. Zi(x(2)) [ =™ (1] = [oo()])

with

Z/(X(Z))=Z Z p(x(2)) " Lp ks

PeP kesf,’*l)
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Definition of the operators

Definition of the operators L /

_ 141 rPU)_l t () 7%
Zpyy = cft {sp(xu)r““)”’ > = Im( > 55, PU))
e=0 v/, [1d] jev' © m=0  9p(j)
o RER(P),
Z - 22 o=l d (1 yd ’”
oo < Lty Es(/)}[[lvj’/l]\’/) =) )
1('")=¢
dm'
0]
oo P
2 I (= % E—zc, ﬂ
u c [Ld\(v/uv’’y jev > m=1 dp()  PYLKII_k
I+1—¢/ —2¢'7
I+1 I+1 "= Seris
+  hép o €oolx(z)~(FDeco S° > II ( > %gw oo(!))
o(@) =0 v/ Cy [LdI\{a} jEr/ * m=0 9 ()
0! ﬁzR(OO)U(/
by =5 @ .
o<err< =t e sO(p,dI\(v U {a)) =L (1)
= = 2 (w'")=e"" e =0 €
z m
2 &oowm . )]
v C [1,d]\(v/Ur’’U{a}) JEV m=1 9__(j) ool),m/ |
I—ef —20!!
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Monodromies

@ Perturbative wave functions have bad monodromies on B-cycles.

@ Monodromies are directly connected to a shift of the filling fractions
€ = §Ai wo,1 by h.

@ Monodromies issues only arises for genus g > 0 classical spectral
curves.

@ Solution is to “sum over filling fractions” =- Formal Fourier
transform = non-perturbative corrections.



Non-perturbative wave functions
@00

Non-perturbative wave functions




Non-perturbative wave functions
o] lo}

Non perturbative wave functions

Non perturbative wave functions

_ _ 1 O
np(D; h, p) = e" 2wo,0+w1,0h ™" [pwor Zh’G(’)(D;p)
E(D) r=0

where E prime form on X and

3r

G(r)(D? p) = Z Z e(il"“’ik)("aT)G((i;),m,;k)(D)

k=0 (ir,...,ir)€[1,8]¥

with
_Pté () 1 (@) () —
Vies T + K (2), ¢ = Py 5, wo,1; H; (z2) = 2 wo 2
Moreover
/
oo(@) 1 m
Yixe (2,0, p) = > e <HIC[,J_71> PPel(D; b, p).
%( L(x(2))\{z}) J=1

and d x d wave functions matrix

7 ‘w(") «
Une(Ahp) = [ ke (@A), mR)]




Non-perturbative wave functions
[ele] J

Trans-series in A

@ Non-perturbative quantities are formal trans-series in 7 of the form

g
00 %Z"j@
S> We Tt Fpg,

r=0 n€Z&

@ Equalities should only be consider coefficients by coefficients in the
trans-monomials.

@ Non-perturbative wave functions satisfy same KZ equations as the
perturbative wave functions.

@ Non-perturbative wave functions have good monodromies. =
rational functions of \.
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Lax systems

We have the Lax systems

dUnp(\, B . N
pIYNPOR) T e (A, B

d\
htev. Lo (WEPN AR = Ap (A B)Wnp(A, h)
with
) = [=PO)+8 Y S G NBes(nh)
PeP keN
[quk(x,h)]' - [Apk/()\ h)] , Vje[1,d],
2,j
and
—P(\) 1 0 0
—P(\) 0 1 0
P(\) = :
—Py_1(A\) 0 0 1

—P4(\) 0 0 ... 0
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Gauge transformation to recover companion-like matrix

when A — 0

Define
1 0 0 0 0
P1(X) -1 0 0 0
Pa()) —P1()) 1 0 0
e : : . : :
Pd7.2(/\) *Pd;3()\) Pd7.4(>\) (*1.)‘1_2 0
Pg_1(A)  —Pyg_2(A) Pg_3(A) ... (=1)I2P()) (-1)?7?
and
U(AR) = (G(N) T Unp(A )
nd“’fji’}’) = L\ h)W(A D)
hlev. Lo W(AK) = Api(hB)W(N)
with

L(\h) = [ )+ D> ek Apk/\h)]
PeP keN

P()\) companion-like matrix associated to classical spectral curve.
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Main result: pole structure of the Lax system

Pole structure of the Lax system

Matrices vak,l(/\, h) are rational functions of A with no pole at
critical values u € x (R).

Matrices L(), i) and (A, k) are rational functions of A with possible
poles only at \ € P and at zeroes of the Wronskian det \JAJNP(A, R)
(i.e. apparent singularities).

@ Long and technical proof by induction on the order in the
trans-series.

@ Proof uses some of admissibility conditions (distinct critical values,
smooth and simple ramification points).

@ Proof should adapt without the admissibility conditions but involving
more technical computations.



Quantum curve

Vj € [1,d], ¥gxp(29)()), ) is solution to a degree d ODE of the form

d k
. 0 ool®) , (;
Vi€l d] : > ba(Ah) (hﬁ> Yor (29(N), B) = 0,
k=0

Coefficients (by(A, 1))/cpo,q) With bo(A, h) = 1 are rational functions of
A with poles only at A\ € P and zeros of the Wronskian.

Nl
& Matrix form: W(\, 7)== {(h(;g) peam(zP(N), h)} satisfies:
: 1<ij<d
0 1 0
wonn = : . : V() h)
ox 0 0 1 '
—by(MB) by 1(MB) ... —bi(A )

L(A, h)W(X, h)

.
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Gauge transformation to remove apparent singularities

@ Apparent singularities < zeros of Wronskian:

G
[T(A = qi(R))

h A
2L exp (h’l/ Pl(/\)d)\>,
. 0

IT(A — AN
i=1

-

W(A, ) = det W(\, ) = K

=

e Explicit gauge transformation J(\, /1) to remove apparent
singularities

1 0 0
V(A h) = 0 . 1 0 WA, h)
Q4 (N,h) Q@ (1) Qi1(\,h)
R -
IT(A—ai(h) MO-a(m)  TO-a(®)

i=1 i=1 i=1

@ Qj: polynomial of degree G — 1 at most defined by interpolation.
@ Gauge transformation does not introduce new poles because

G
det J(X\, h) = (H(/\ A GAk) <H(A q,-(h)))

i=1

-1
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Remarks

4 equivalent gauges:

e Gauge W(\,h): Natural gauge from KZ equations and provides
compatible auxiliary systems. But leading order in % of L(), %) is not
companion-like = Classical spectral curve is not easily recovered.
Contains apparent singularities.

o Gauge \TI(A, h): Same properties as the previous gauge (7° gauge
transformation) except leading order in /i is companion-like and
recovers the classical spectral curve.

o Gauge V(A h): L(A, h) is companion-like = Quantum curve is
directly read in the last line of L(\, /). Classical spectral curve
directly obtained as & — 0 limit of L(\, k). But contains apparent
singularities. Natural framework for Darboux coordinates and
isomonodromic deformations.

o Gauge V: Z()\Ji) has no apparent singularity. But no longer
companion like (last two lines are non-trivial) so less adapted to read
the classical and quantum curves.
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Classical spectral curve

Classical spectral curve

We take d =2, N =0, rg) =2 and rég) = 4. Two points above infinity
denoted by 0o(®) and o0 non-ramified.

y? = Pi(\)y + P2(\) =0,
with

Pi(A) = PO+ PO+ P
Po(\) = P( ’ N+ PO P(2)2)\2 + PO A+ PO,

6 Spectral times (¢ j)1<i<2,0<j<3 are defined by Vi € {1,2}:

¥(2) = —tisx(2)? —tiax(2) — ti1 — tiox(2) 1+ 0 (x(2)72) , as z — col?)

v
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Connection with spectral times

Relations between spectral times and Coefficients of the classical spectral

curve:

pm)

00,2

p(

00,1

1
P
P(z)

0,4
P(2)

00,3

p(2)

00,2

P(2)

00,1

and 0 = —t1,0 — t2,0-

—ti13— 23
—tip — o
—ti1 —
t13t23

tiota 3+ t13t22
tiptro + t13t21 + t1 123
t13t20 + t1ot2,3 + tioto 1 +t11t2
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KZ equations

Using the general theory, we get:

5] z,h) o)
h %aNxPz) '+¢'1 NP (Z h) = P1(x(2))Yone (2, 1),

o)
Ovine (2.F) ool) oo, symbo
B2 — Py (x(2)uie (2, 1) + hev. Lxz(x(2)) [655w =™ (2, )]
where

EKz(/\) = ht1’3ICoo(2),1 + ht273Icoo(1),l — t273>\ —t22
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Lax pair from KZ equations

@) L)) (@) ((2)
Define W(A,h)—( Y63 NP( (%), %) %’Np(g)z ), ) >
oAU (20N, 1) hoAUsp (2P (), h)
KZ equations are equwalent to

0
hONW(A, 1) = (—P2(>\) +HP(A) + H = 52 + haX Py ) s ) v

q
H P 1
symbol — —aA — 2 + h(A=q) -
ev.Liz(A)[V (x, m)] < [Akzl1 (A1) [AKZ]2 2 /\, h) voun

for oo = t; 3 + 2t> 3 and some unknown H.
Equivalently defining

L= Lxz(\) +ta3\+t22 = It13Z 2 1 + ht237 )

we have

(1) H
O N (I ?A"r)> WA h)
2,1(A, 10 2,2(A R

AN, R)W(A, R)

1
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Evolution equations

e Compatibility equations L[L(\, 7)] = RONA(N, i) + [A(N, 7)), L(A, R)]:

[P, = cP;1=0
PP, = —27119(2 +h[P
clP?)] = -nPZ +hP W Pl)
LlP@g) - LH] = 2hP(2 2 4 hPC 2) - PO,p o hP P,
H = h2 - Pi(q )h+P2(q)_hP1(Q)+h( oo,z—tz,z.)q
Llg] = Pi(q) - 27
Llp) = —Pi(q)p+hPi(q) + b3

e Equivalent to
L[t13] = L[t2,3] = L[t1,2] = L[t1,0] = L[t2,0] = 0, L[t1,1] = hto3, L[t21] = ht1 3

o Equivalent to £ = hty 30s, , + ht130;,,
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Hamiltonian evolution

Hamiltonian evolution

“Time" (L)-evolution is Hamiltonian < (p, q) are Darboux coordinates
OHo OHo
[a] ap @ LlPl=h5e
for Hamiltonian Hy(p, g, h):
p P (1)
Ho(p. a,h) = 33 = P1(a) 3. + P2(q) = hP1(q) + hq(2P5 ), — 123)
giving H = Ho(p, q, 1) + h(t13 + t23)g.

.




Example
ooe

Connection with the Painlevé 2 equation

@ g satisfies the evolution equation:

L%q) = 2(tiz— t2,3)2q23 +3(t13 — t23)(tip — t22)q?
+ ((tl,z — b)) +2(t13— t23)(t11 — t2,1)) q
+(t1o —to)(t11 — 1) + (2to — A)(t13 — t23)

e Change of variables (t1,1, 1) <+ (7,7) and affine rescaling:

1 . 1
T = m (t2>1 — t1_1) , T = m (t1,3t1,1 - t2,3t2,1)

1 ot )2
b= (-2t b))’ (TJFM)

4(t1 3 — tr3)?

1
. *(t13*t23))§< tio—t2 )
= et b A A + —_— 77
q9 < 2 q9 2(!‘1,3 — t273)

Then §(t, h) satisfies the Painlevé 2 equation

- - . h
h28§2q =24+ t§ — (tl,o — 2)
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Gauge without apparent singularities

o Gauge transformation to remove apparent singularity:
o 1 0
V(N h) = < p 1>\U(>\,h) = J(\, A)V(\ R)
h(A—q)  A—gq

@ Provides another Lax pair (Jimbo-Miwa type) without apparent

singularity:
I\ = 0 A=g
’ - (A +q)(t13+t23) + o2+ t12) 7 + (AN h) =2+ Pi(N)
H
A\, h) (—(tl,a + f2,3)p>\ -5 Tty -1 H)
(13 +103)F +Q(\h) (b3 +t3)g+tip+2br—
where
@) = PN - (PRia+ PEYN — (P2,a* + PEya + PE )X

+P((i)74q3 + P((i)‘3q2 + P<(>2o),2q + Pg),l + hty,3)

Q@n) = PP+ 2P g+ PP+ 3PD,q? + 2P0 g+ PO,

00,4
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Open questions and outlooks

@ Non-perturbative quantities (wave function, Lax pairs, etc.) are
formal 7 trans-series = Can we obtain convergent solutions?
Possible solution: works of Costin [9, 10, 11, 12] = Write down the
RHP satisfied by W(A, k). Make connections with (bi)orthogonal
polynomials RHP in the hermitian matrix models case.

@ Remove some of the admissibility conditions: simple ramification
points, smooth ramification points.

@ General connections with isomonodromic deformations? Require to
define in general the tangent space 0;,; and “admissible”
deformations of curves. Check that operators £ may always be
written using spectral times derivatives. Prove that time evolutions
are Hamiltonian. Issue solved for d =2 in [32, 33].

@ Study the change of Torelli marking = Hitchin’s equations for
choice of polarization in geometric quantization.

o Consider classical spectral curves over C* (or more complicated base
curve) to study of Gromov-Witten invariants of toric Calabi-Yau
three-folds by mirror symmetry.
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