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Presentation of the problem
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General position of the talk

General problem

How to quantize a “classical spectral curve” ([y , x ] = 0)

P(x , y) = 0 , P rational in x, monic polynomial in y

into a linear differential equation ([~∂x , x ] = ~):(
P̂

(
x , ~ d

dx

))
ψ(x , ~) = 0 ?

P̂ rational in x with same pole structure as P.

Key ingredients

Key ingredient 1: Topological recursion [26].
Key ingredient 2: Integrable systems, Lax pairs:

~ ∂
∂x

Ψ(x , ~, t) = L(x , ~, t)Ψ(x , ~, t) , ~ ∂
∂t

Ψ(x , ~, t) = A(x , ~, t)Ψ(x , ~, t)
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Strategy of the construction

1 Define proper initial data to apply topological recursion (TR)
⇔ Minor technical restrictions on the classical spectral curve
P(x , y) = 0: “Admissible initial data”

2 Apply TR to initial data: ⇒ Output: (ωh,n)h,n≥0: “TR differentials”.

3 Stack the ωh,n into some “perturbative wave function” (ψi (z))di=1.

ψi (z) = exp

( ∑
h,n≥0

~2h−2+n

n!

∫
Di

· · ·
∫
Di

(
ωh,n(z1, . . . , zn)−

δh,0δn,2dx(z1)dx(z2)

(x(z1)− x(z2))2

))

⇒ formal WKB series in ~.

4 Take kind of “formal Fourier transform” to get “non-perturbative
wave functions” and regroup them into a wave matrix ΨNP(λ; ~)
⇒ Formal trans-series in ~.

5 Prove that ~∂λΨNP(λ, ~) = L(λ, ~)ΨNP(λ, ~) with L rational with
controlled pole structure. ⇔ “Quantum curve”.

6 Obtain auxiliary systems ~∂tΨNP(λ, ~, t) = A(λ, ~, t)ΨNP(λ, ~, t)
with A rational with controlled pole structure.
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Known results and applications

Review on TR and quantum curves by P. Norbury [35].

Elements of the strategy already existing in the literature
[7, 20, 22, 25, 26, 34].

Non-perturbative construction is not necessary for genus 0 classical
spectral curves.

Several examples worked out in details [16, 17, 18, 19, 29, 31, 38].

Reverse approach also exists [2, 5, 30, 33]:
[Lax pair: (L(λ, ~),A(λ, ~)) + Topological type property] ⇒
Ψ reconstructed by TR applied on the associated classical spectral
curve lim

~→0
det(yId − L(λ, ~)) = 0.

Applications in enumerative geometry
[1, 3, 4, 8, 13, 14, 21, 36, 37, 39, 27, 28].
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Summary of our results

Results presented following [32] for sl2 case (hyper-elliptic case) and
[24] for the general gld case. Similar works for sl2 case in [23].

Connection with isomonodromic deformations only in sl2 case in [32].

Technical assumptions include

Pole of any degree including infinity.
Poles may be ramification points.
Ramifications points are simple and smooth.

Main results: Construction of the matrix wave functions,
quantum curve and some compatible auxiliary systems with
same pole structure as the initial spectral curve.

Applications to two examples: gl2 example (recovering Painlevé 2
equation) and a gl3 example with only a single pole at infinity.
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Classical spectral curve, TR
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Classical spectral curve

Classical spectral curve

Let (Λ1, . . . ,ΛN) be N ≥ 0 distinct points on P1 \ {∞}. Let
Hd(Λ1, . . . ,ΛN ,∞) be the Hurwitz space of covers x : Σ→ P1 of degree
d defined as the Riemann surface

Σ :=
{

(λ, y) | P(λ, y) = 0
}
,

where x(λ, y) := λ and

P(λ, y) =
d∑

l=0

(−1)lyd−lPl(λ) = 0, P0(λ) = 1

with each coefficient (Pl)l∈J1,dK being a rational function with

possible poles at λ ∈ P := {Λi}Ni=1

⋃
{∞}.

A classical spectral curve (Σ, x) is the data of the Riemann surface Σ
and its realization as a Hurwitz cover of P1.
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Classical spectral curve with fixed pole structure

Classical spectral curve with fixed pole structure

For l ∈ J1, dK, let r
(l)
∞ and

(
r

(l)
Λi

)N
i=1

be some non-negative integers. We

consider the subspace

Hd

((
Λ1, (r

(l)
Λ1

)dl=1

)
, . . . ,

(
ΛN , (r

(l)
ΛN

)dl=1

)
,
(
∞, (r (l)

∞ )dl=1

))
⊂ Hd(Λ1, . . . ,ΛN ,∞)

of covers x such that the rational functions (Pl)
d
l=1 are of the form

Pl(λ) :=
∑
P∈P

∑
k∈S(l)

P

P
(l)
P,k ξP(λ)−k , for l ∈ J1, dK,

where we have defined

∀ i ∈ J1,NK : S
(l)
Λi

:= J1, r
(l)
Λi

K and S(l)
∞ := J0, r(l)

∞K,

and the local coordinates {ξP(λ)}P∈P around P ∈ P are defined by

∀ i ∈ J1,NK : ξΛi (λ) := (λ− Λi ) and ξ∞(λ) := λ−1.
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Canonical local coordinates and spectral times

Canonical local coordinates

Let P ∈ P1 and p ∈ x−1(P). Canonical coordinates on P1 near P are

ξP(x) := x − P if P 6=∞ , εP := 1,

ξP(x) :=
1

x
if P =∞ , εP := −1.

Canonical local coordinates near any p ∈ x−1(P) are

ζp(z) = ξP(x(z))
1
dp , dp = orderp(ξP).

Spectral times (KP times)

The 1-form ydx has the following expansion:

ydx =

sp−1∑
k=0

tp,kζ
−k−1
p dζp + analytic at p.

(tp,k)p∈x−1(P),k∈J0,sp−1K are called “spectral times”.
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Ramification points and critical values

Ramification points and critical values

We denote by R0 the set of all ramification points of the cover x , and by
R the set of all ramification points that are not poles (i.e. not in
x−1(P)),

R0 :=
{
p ∈ Σ / 1 + orderp dx 6= ±1

}
,

R :=
{
p ∈ Σ / dx(p) = 0 , x(p) /∈ P

}
= R0 \ x−1(P).

We shall refer to their images x(R) as the critical values of x .
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Admissible spectral curve

Admissible classical spectral curves

We say that a classical spectral curve (Σ, x) is admissible if it satisfies:

The Riemann surface Σ defined by P(λ, y) = 0 is an irreducible
algebraic curve, i.e. P(λ, y) does not factorize.

All ramification points are simple, i.e. dx has only a simple zero at
a ∈ R.

Critical values are distinct: for any (ai , aj) ∈ R×R such that
ai 6= aj then x(ai ) 6= x(aj).

Ramification points are smooth: for any a ∈ R, dy(a) 6= 0 (i.e. the
tangent vector (dx(a), dy(a)) to the immersed curve
{(λ, y) | P(λ, y) = 0} is not vanishing at a).

Generic ramified poles: for any pole p ∈ x−1(P) ramified, the
1-form ydx has a pole of degree rp ≥ 3 at p, and the corresponding
spectral times satisfy tp,rp−2 6= 0.
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Remarks on the technical assumptions

Topology of admissible spectral curves relatively to spectral times is
complicated. ⇒ Spectral times are not independent. Tangent space
and deformations hard to define for d ≥ 3.

Tangent space defined for d = 2 ↔ Existence of deformations ∂tp,k .

Ingredients to lift some technical assumptions already exist in the
literature: simple ramification points, smooth ramification points,
reducible algebraic curves.

Defining properly the tangent space would allow to make the
connection with isomonodromic deformations for d ≥ 3.

Last condition allows not to include ramified poles in the
residues of TR.
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Admissible initial data

Admissible initial data

Given an admissible spectral curve (Σ, x) of genus g , we add

Choice of Torelli marking (Ai ,Bi )gi=1).
⇔ Associated “Bergman” kernel (normalized fundamental second
kind differential) B(Ai ,Bi )

g
i=1 .

A generic smooth point o ∈ Σ \ x−1(P) and some choice of
non-intersecting homology chains Co→p for each p ∈ x−1(P)
compatible with the Torelli marking:

∀ p ∈ x−1(P), ∀ i ∈ J1, gK , Ai ∩ Co→p = 0 = Bi ∩ Co→p,

These three ingredients define some “admissible initial data” on which
TR can be applied. Denoted ((Σ, x), (Ai ,Bi )gi=1).
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General considerations

Initial version [26] of TR dating back to 2007 is sufficient since
ramification points are assumed simple.

Some generalizations of TR exist to deal with non-simple
ramification points, non-irreducible curves [6, 15].

TR takes admissible initial data as input and provides some
TR differentials (ωh,n)h≥0,n≥0 as output.

https://en.wikipedia.org/wiki/Topological_recursion

These differentials are computed by recursion on s = n + 2h starting
from

ω0,1 := ydx , ω0,2 := B(Ai ,Bi )
g
i=1 ,

https://en.wikipedia.org/wiki/Topological_recursion
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Definition of TR

Topological recursion

We have for h ≥ 0, n ≥ 0 with (h, n) /∈ {(0, 0), (0, 1)}:

ωh,n+1(z0, z) :=
∑
a∈R

Res
z→a

1

2

∫ z
σa(z) ω0,2(z0, ·)

ω0,1(z)− σ∗aω0,1(z)
W̃(2)

h,n+1(z, σa(z); z),

with

W̃(2)
h,n+1(z, z ′; z) := ωh−1,n+2(z, z ′, z)

+
∑

A t B = z, s ∈ J0, hK
(s, |A|) /∈ {(0, 0), (h, n)}

ωs,|A|+1(z,A)ωh−s,|B|+1(z ′,B)

and

ωh,0 :=
1

2− 2h

∑
a∈R

Res
z→a

ωh,1(z)Φ(z), ∀ h ≥ 2

and (ω0,0, ω1,0) defined by specific formulas (See [26])
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Loop equations

Some combinations of the TR differentials have interesting
properties ⇒ “Loop equations”

Following [7], for (h, n, l) ∈ N3:

Q
(0)
h,n+1

(λ; z) = Q̂
(0)
h,n+1

(λ; z) = Q̃
(0)
h,n+1

(λ; z) := δh,0δn,0,

Q
(l)
h,n+1

(λ; z) :=
∑

β⊆
l
x−1(λ)

∑
µ∈S(β)

∑
l(µ)⊔
i=1

Ji =z

∑
l(µ)∑
i=1

gi =h+l(µ)−l

l(µ)∏
i=1

ωgi ,|µi |+|Ji |
(µi , Ji )



Q̂
(l)
h,n+1

(z; z) :=
∑

β⊆
l

(
x−1(x(z))\{z}

) ∑
µ∈S(β)

∑
l(µ)⊔
i=1

Ji =z

∑
l(µ)∑
i=1

gi =h+l(µ)−l

l(µ)∏
i=1

ωgi ,|µi |+|Ji |
(µi , Ji )



Q̃
(l)
h,n+1

(λ; z) :=
Q

(l)
h,n+1

(λ; z)

(dλ)l
−

n∑
j=1

dzj

 1

λ − x(zj )

Q̂
(l−1)
h,n

(zj ; z \ {zj})

(dx(zj )l−1



Loop equations

For any (h, n, l) ∈ N3 and any z ∈ (Σ \ R)n, the function λ 7→ Q
(l)
h,n+1(λ;z)

(dλ)l

has no poles at critical values.
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Perturbative wave functions
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Generic perturbative wave functions

Perturbative wave functions

((Σ, x), (Ai ,Bi )gi=1) admissible initial data, D =
s∑

i=1

αi [pi ] generic divisor

on Σ. Perturbative wave functions associated to D are

ψ(D, ~) := exp

( ∑
h,n≥0

~2h−2+n

n!

∫
D
· · ·
∫
D
ωh,n(z)− δh,0δn,2

dx(z1)dx(z2)

(x(z1)− x(z2))2

)

∀ i ∈ J1, sK : ψ0,i (D, ~) := ψ(D, ~),

∀ i ∈ J1, sK , l ≥ 1 : ψl,i (D, ~) :=

[∑
h≥0

∑
n≥0

~2h+n

n!

n︷ ︸︸ ︷∫
D
· · ·
∫
D

Q̂
(l)
h,n+1(pi ; ·)
(dx(pi ))l

]
ψ(D, ~).

Remark

Definition as a formal power series in ~ times exponential terms in
finite negative powers of ~ (formal WKB series):

e−~
−2ω0,0e−~

−1
∫
D
ω0,1ψ(D, ~) ∈ C[[~]].
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KZ equations

Loop equations translates into Knizhnik–Zamolodchikov (KZ)
equations [7]

Generic KZ equations

For i ∈ J1, sK and l ∈ J0, d − 1K, we have

~
αi

dψl,i (D, ~)

dx(pi )
= −ψl+1,i (D, ~)− ~

∑
j∈J1,sK\{i}

αj
ψl,i (D, ~)− ψl,j (D, ~)

x(pi )− x(pj )

+
∑
h≥0

∑
n≥0

~2h+n

n!

∫
z1∈D

. . .

∫
zn∈D

Q̃
(l+1)
h,n+1(x(pi ); z) ψ(D, ~)

+

(
1

αi
− αi

)[ ∑
(h,n)∈N2

~2h+n+1

n!

n︷ ︸︸ ︷∫
D
· · ·
∫
D

d

dx(pi )

( Q̂
(l)
h,n+1(pi ; ·)

(dx(pi ))l

)]
ψ(D, ~).

Valid for generic divisors (pi not a pole or a ramification point).

Simplification for two points divisors with (α1, α2) ∈ {−1,+1}2.
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Remarks

KZ equations allow to obtain PDEs for ψ(D, ~).

Generic divisors provide PDEs with derivatives ∂
∂x(z) up to order d2

generically.

Quantum curve is expected to be of order d and not d2.

At least two specific choices of divisors allow for order d :
D = [z ]− [∞(α)] or D = [z ]− [σ(z)].

Other choices may also provide order d PDEs.
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Regularization of perturbative wave functions for

D = [z ]− [∞(α)]

Infinity is a pole of the classical spectral curve ⇒ D = [z ]− [∞(α)] is not
a generic divisor ⇒ Some quantities requires regularization from

lim
p→∞(α)

([z ]− [p])

Definition of regularized wave function

ψreg(D = [z]− [∞(α)], ~) := exp

(
~−1

(
V∞(α) (z) +

∫ z

∞(α)
(ydx − dV∞(α) )

))
1

E(z,∞(α))
√

dx(z)dζ∞(α) (∞(α))
exp

( ∑
n≥3δh,0

~2h−2+n

n!

∫ z

∞(α)
· · ·
∫ z

∞(α)
ωh,n

)
ψreg
l (D = [z]− [∞(α)], ~) :=( ∑
n≥3δh,0

~2h+n

n!

∫ z

∞(α)
. . .

∫ z

∞(α)

Q̂
(l)
h,n+1(z; z1, . . . , zn)

dx(z)l

)
ψreg(D = [z]− [∞(α)], ~)
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KZ equations for regularized wave functions

KZ equations for regularized wave functions

~
d

dx(z)
ψreg
l (D = [z]− [∞(α)], ~) + ψreg

l+1(D = [z]− [∞(α)], ~)

=

[∑
h≥0

∑
n≥0

~2h+n

n!

∑
P∈P

∑
k∈S(l+1)

P

ξP(x(z))−k Res
λ→P

ξP(λ)k−1

dξP(λ)

∫ z1=z

z1=∞(α)
. . .

∫ zn=z

zn=∞(α)

Q
(l+1)
h,n+1(λ; z)

(dλ)l+1

]
ψreg(D = [z]− [∞(α)], ~)
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Comments and technical issue

RHS of KZ equations uses residues, i.e. integrals.

RHS may be rewritten using generalized integrals, i.e. linear
operators ICp,k .

ICp,k is expected to correspond to ∂tp,k . Valid for d = 2 and
examples.

Action of these operators is defined only on a sub-algebra generated
by
∫
C1
. . .
∫
Cn ωh,n. ⇔ Algebra of symbols

One need to check that these operators never act on something else.

Avoid the problematic definition on all differential forms on Σ.
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PDE form of KZ equations

PDE form of KZ equations

~
d

dx(z)
ψreg
l ([z]−[∞(α)])+ψreg

l+1([z]−[∞(α)]) = ev. L̃l (x(z))
[
ψreg symb([z]− [∞(α)])

]
with

L̃l (x(z)) =
∑
P∈P

∑
k∈S(l+1)

P

ξP(x(z))−k L̃P,k,l
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Definition of the operators

Definition of the operators L̃P,k,l

L̃P,k,l := ε
l+1
P

[
ξP (x(z))−(l+1)εP

l+1∑
`′=0

∑
ν′⊂

`′ J1,dK

∏
j∈ν′

( r
P(j)−1∑
m=0

t
P(j),m

d
P(j)

ξ

− m
d
P(j)

P

)

∑
0≤`′′≤ l+1−`′

2

∑
ν′′∈S(2)(J1,dK\ν′)

l(ν′′)=`′′

`′′∏
i=1

~2R(P)
ν′′
i

d

P
(ν′′

i,+
)
d

P
(ν′′

i,−)

∑
ν ⊆
l+1−`′−2`′′

J1,dK\(ν′∪ν′′)

∏
j∈ν

(
~2
∞∑
m=1

ξ

m
d
P(j)

P

d
P(j)

IC
P(j),k

)]
−k

+ ~δP,∞
εl+1
∞

d
∞(α)

[
ξ∞(x(z))−(l+1)ε∞

l+1∑
`′=0

∑
ν′⊂

`′ J1,dK\{α}

∏
j∈ν′

( r
∞(j)−1∑
m=0

t
∞(j),k

d
∞(j)

ξ

− m
d
∞(j)

∞
)

∑
0≤`′′≤ l+1−`′

2

∑
ν′′∈S(2)(J1,dK\(ν′∪{α}))

l(ν′′)=`′′

`′′∏
i=1

~2R(∞)
ν′′
i

d

∞
(ν′′

i,+
)
d

∞
(ν′′

i,−)

∑
ν ⊆
l−`′−2`′′

J1,dK\(ν′∪ν′′∪{α})

∏
j∈ν

(
~2
∞∑
m=1

ξ

m
d
∞(j)
∞
d
∞(j)

IC
∞(j),m

)]
−k
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Monodromies

Perturbative wave functions have bad monodromies on B-cycles.

Monodromies are directly connected to a shift of the filling fractions
εi =

∮
Ai
ω0,1 by ~.

Monodromies issues only arises for genus g > 0 classical spectral
curves.

Solution is to “sum over filling fractions” ⇒ Formal Fourier
transform ⇒ non-perturbative corrections.
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Non-perturbative wave functions
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Non perturbative wave functions

Non perturbative wave functions

ψNP(D; ~,ρ) := e~
−2ω0,0+ω1,0e~

−1 ∫
D ω0,1

1

E(D)

∞∑
r=0

~rG (r)(D;ρ)

where E prime form on Σ and

G (r)(D;ρ) :=
3r∑
k=0

∑
(i1,...,ik )∈J1,gKk

Θ(i1,...,ik )(v, τ)G
(r)
(i1,...,ik )

(D)

with

vj :=
ρj + φj

~
+ µ

(α)
j (z), φj :=

1

2πi

∮
Bj
ω0,1, µ

(α)
j (z) :=

1

2πi

∫
D

∮
Bj
ω0,2.

Moreover

ψ∞
(α)

l,NP (z, ~,ρ) :=
∑

β⊆
l
(x−1(x(z))\{z})

1

l!
ev.

 l∏
j=1

ICβj ,1

 ψsymbol
NP (D; ~,ρ).

and d × d wave functions matrix

Ψ̂NP(λ, ~,ρ) :=
[
ψ∞

(α)

l−1,NP(z(α)(λ), ~,ρ)
]

1≤l,α≤d
,
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Trans-series in ~

Non-perturbative quantities are formal trans-series in ~ of the form

∞∑
r=0

∑
n∈Zg

~re

1
~

g∑
j=1

njφj

Fr ,n,

Equalities should only be consider coefficients by coefficients in the
trans-monomials.

Non-perturbative wave functions satisfy same KZ equations as the
perturbative wave functions.

Non-perturbative wave functions have good monodromies. ⇒
rational functions of λ.
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Lax pairs
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Lax systems

Lax systems

We have the Lax systems

~
dΨ̂NP(λ, ~)

dλ
= L̂(λ, ~)Ψ̂NP(λ, ~)

~−1ev.LP,k,l Ψ̂symbol
NP (λ, ~) = ÂP,k,l (λ, ~)Ψ̂NP(λ, ~)

with

L̂(λ, ~) =

[
− P̂(λ) + ~

∑
P∈P

∑
k∈N

ξ−k
P (λ)∆̂P,k (λ, ~)

]
[
∆̂P,k (λ, ~)

]
2,j

=
[
ÂP,k,l (λ, ~)

]
1,j
, ∀ j ∈ J1, dK,

and

P̂(λ) :=


−P1(λ) 1 0 . . . 0
−P2(λ) 0 1 . . . 0

...
...

...
. . .

...
−Pd−1(λ) 0 0 . . . 1
−Pd (λ) 0 0 . . . 0


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Gauge transformation to recover companion-like matrix
when ~→ 0

Define

G(λ) :=



1 0 0 . . . 0 0
P1(λ) −1 0 . . . 0 0
P2(λ) −P1(λ) 1 . . . 0 0

...
...

...
. . .

...
...

Pd−2(λ) −Pd−3(λ) Pd−4(λ) . . . (−1)d−2 0
Pd−1(λ) −Pd−2(λ) Pd−3(λ) . . . (−1)d−2P1(λ) (−1)d−1


and

Ψ̃(λ, ~) := (G(λ))−1 Ψ̂NP(λ, ~)

~
dΨ̃(λ, ~)

dλ
= L̃(λ, ~)Ψ̃(λ, ~)

~−1ev.LP,k,l Ψ̃(λ, ~) = ÃP,k,l (λ, ~)Ψ̃(λ)

with
L̃(λ, ~) =

[
P̃(λ) + ~

∑
P∈P

∑
k∈N

ξ−k
P (λ)∆̃P,k (λ, ~)

]
P̃(λ) companion-like matrix associated to classical spectral curve.
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Main result: pole structure of the Lax system

Pole structure of the Lax system

Matrices ÃP,k,l(λ, ~) are rational functions of λ with no pole at
critical values u ∈ x (R).

Matrices L̃(λ, ~) and L̂(λ, ~) are rational functions of λ with possible

poles only at λ ∈ P and at zeroes of the Wronskian det Ψ̂NP(λ, ~)
(i.e. apparent singularities).

Long and technical proof by induction on the order in the
trans-series.

Proof uses some of admissibility conditions (distinct critical values,
smooth and simple ramification points).

Proof should adapt without the admissibility conditions but involving
more technical computations.
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Quantum curve

Quantum curve

∀ j ∈ J1, dK, ψ∞
(α)

0,NP(z (j)(λ), ~) is solution to a degree d ODE of the form

∀ j ∈ J1, dK :
d∑

k=0

bd−k(λ, ~)

(
~ ∂

∂λ

)k

ψ∞
(α)

0,NP (z (j)(λ), ~) = 0,

Coefficients (bl(λ, ~))l∈J0,dK with b0(λ, ~) = 1 are rational functions of
λ with poles only at λ ∈ P and zeros of the Wronskian.

⇔ Matrix form: Ψ(λ, ~) :=

[(
~ ∂
∂λ

)i−1

ψ∞
(α)

0,NP(z (j)(λ), ~)

]
1≤i,j≤d

satisfies:

~
∂

∂λ
Ψ(λ, ~) =


0 1 . . . 0
...

. . .
. . .

. . .

0 0 1
−bd (λ, ~) −bd−1(λ, ~) . . . −b1(λ, ~)

Ψ(λ, ~)

:= L(λ, ~)Ψ(λ, ~)
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Gauge transformation to remove apparent singularities

Apparent singularities ⇔ zeros of Wronskian:

W (λ, ~) := det Ψ(λ, ~) = κ

G∏
i=1

(λ− qi (~))

N∏
i=1

(λ− Λi )
GΛi

exp

(
~−1

∫ λ

0
P1(λ)dλ

)
,

Explicit gauge transformation J(λ, ~) to remove apparent
singularities

Ψ̌(λ, ~) :=



1 . . . 0 0

. . .
. . .

...
0 . . . 1 0

Qd (λ,~)
G∏
i=1

(λ−qi (~))

. . .
Q2(λ,~)

G∏
i=1

(λ−qi (~))

Q1(λ,~)
G∏
i=1

(λ−qi (~))

Ψ(λ, ~)

Qj : polynomial of degree G − 1 at most defined by interpolation.

Gauge transformation does not introduce new poles because

det J(λ, ~) =

(
N∏

k=1

(λ− Λk )GΛk

)(
G∏
i=1

(λ− qi (~))

)−1
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Remarks

4 equivalent gauges:

Gauge Ψ̂(λ, ~): Natural gauge from KZ equations and provides
compatible auxiliary systems. But leading order in ~ of L̂(λ, ~) is not
companion-like ⇒ Classical spectral curve is not easily recovered.
Contains apparent singularities.

Gauge Ψ̃(λ, ~): Same properties as the previous gauge (~0 gauge
transformation) except leading order in ~ is companion-like and
recovers the classical spectral curve.

Gauge Ψ(λ, ~): L(λ, ~) is companion-like ⇒ Quantum curve is
directly read in the last line of L(λ, ~). Classical spectral curve
directly obtained as ~→ 0 limit of L(λ, ~). But contains apparent
singularities. Natural framework for Darboux coordinates and
isomonodromic deformations.

Gauge Ψ̌: Ľ(λ, ~) has no apparent singularity. But no longer
companion like (last two lines are non-trivial) so less adapted to read
the classical and quantum curves.



Presentation of the problem Classical spectral curve, TR Perturbative wave functions Non-perturbative wave functions Lax pairs Example Open questions and outlooks References

Example
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Classical spectral curve

Classical spectral curve

We take d = 2, N = 0, r
(1)
∞ = 2 and r

(2)
∞ = 4. Two points above infinity

denoted by ∞(1) and ∞(2) non-ramified.

y2 − P1(λ)y + P2(λ) = 0,

with

P1(λ) = P
(1)
∞,2λ

2 + P
(1)
∞,1λ+ P

(1)
∞,0

P2(λ) = P
(2)
∞,4λ

4 + P
(2)
∞,3λ

3 + P
(2)
∞,2λ

2 + P
(2)
∞,1λ+ P

(2)
∞,0

6 Spectral times (ti,j)1≤i≤2,0≤j≤3 are defined by ∀ i ∈ {1, 2}:

y(z) = −ti,3x(z)2−ti,2x(z)−ti,1−ti,0x(z)−1 +O
(
x(z)−2

)
, as z →∞(i)
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Connection with spectral times

Relations between spectral times and Coefficients of the classical spectral
curve:

P
(1)
∞,2 = −t1,3 − t2,3

P
(1)
∞,1 = −t1,2 − t2,2

P
(1)
∞,0 = −t1,1 − t2,1

P
(2)
∞,4 = t1,3t2,3

P
(2)
∞,3 = t1,2t2,3 + t1,3t2,2

P
(2)
∞,2 = t1,2t2,2 + t1,3t2,1 + t1,1t2,3

P
(2)
∞,1 = t1,3t2,0 + t1,0t2,3 + t1,2t2,1 + t1,1t2,2

and 0 = −t1,0 − t2,0.
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KZ equations

Using the general theory, we get:

KZ equations

 ~ ∂ψ
∞(1)

0,NP (z,~)

∂x(z)
+ ψ∞

(1)

1,NP (z , ~) = P1(x(z))ψ∞
(1)

0,NP (z , ~),

~ ∂ψ
∞(1)

1,NP (z,~)

∂x(z)
= P2(x(z))ψ∞

(1)

0,NP (z , ~) + ~ ev.LKZ(x(z))
[
ψ∞

(1), symbol
0,NP (z , ~)

]
where

LKZ(λ) := ~t1,3IC∞(2),1
+ ~t2,3IC∞(1),1

− t2,3λ− t2,2
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Lax pair from KZ equations

Define Ψ(λ, ~) =

(
ψ∞

(α)

0,NP (z(1)(λ), ~) ψ∞
(α)

0,NP (z(2)(λ), ~)

~∂λψ∞
(α)

0,NP (z(1)(λ), ~) ~∂λψ∞
(α)

0,NP (z(2)(λ), ~)

)
KZ equations are equivalent to

~∂λΨ(λ, ~) =

(
0 1

−P2(λ) + ~P′1(λ) + H − p
λ−q

+ ~αλ P1(λ) + ~
λ−q

)
Ψ(λ, ~)

ev.LKZ (λ)[Ψsymbol(λ, ~)] =

(
−αλ− H

~ + p
~(λ−q)

− 1
λ−q

[AKZ ]2,1 (λ, ~) [AKZ ]2,2 (λ, ~)

)
Ψ(λ, ~)

for α = t1,3 + 2t2,3 and some unknown H.
Equivalently defining

L := LKZ(λ) + t2,3λ+ t2,2 = ~t1,3I∞(2),1 + ~t2,3I∞(1),1

we have

ev.L[Ψsymbol(λ, ~)] =

(
P

(1)
∞,2λ+ t2,2 − H

~ + p
~(λ−q)

− 1
λ−q

A2,1(λ, ~) A2,2(λ, ~)

)
Ψ(λ, ~)

:= A(λ, ~)Ψ(λ, ~)
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Evolution equations

Compatibility equations L[L(λ, ~)] = ~∂λA(λ, ~) + [A(λ, ~), L(λ, ~)]:

L[P
(2)
∞,4] = L[P

(2)
∞,3] = 0

L[P
(2)
∞,2] = −2~P(2)

∞,4 + ~
[
P

(1)
∞,2

]2

L[P
(2)
∞,1] = −~P(2)

∞,3 + ~P(1)
∞,1P

(1)
∞,2

L[P
(2)
∞,0]− L[H] = 2~P(2)

∞,4q
2 + ~P(2)

∞,3q − P
(1)
∞,2p + ~P(1)

∞,0P
(1)
∞,2

H =
p2

~2
− P1(q)

p

~
+ P2(q)− ~P ′1(q) + ~(P

(1)
∞,2 − t2,3)q

L[q] = P1(q)− 2
p

~
L[p] = −P ′1(q)p + ~P ′2(q) + ~2t2,3

Equivalent to

L[t1,3] = L[t2,3] = L[t1,2] = L[t1,0] = L[t2,0] = 0 , L[t1,1] = ~t2,3 , L[t2,1] = ~t1,3

Equivalent to L = ~t2,3∂t1,1 + ~t1,3∂t2,1
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Hamiltonian evolution

Hamiltonian evolution

“Time” (L)-evolution is Hamiltonian ⇔ (p, q) are Darboux coordinates

L[q] = −~∂H0

∂p
, L[p] = ~

∂H0

∂q

for Hamiltonian H0(p, q, ~):

H0(p, q, ~) =
p2

~2
− P1(q)

p

~
+ P2(q)− ~P ′1(q) + ~q(2P

(1)
∞,2 − t2,3)

giving H = H0(p, q, ~) + ~(t1,3 + t2,3)q.
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Connection with the Painlevé 2 equation

q satisfies the evolution equation:

L2[q] = 2(t1,3 − t2,3)2q3 + 3(t1,3 − t2,3)(t1,2 − t2,2)q2

+
(
(t1,2 − t2,2)2 + 2(t1,3 − t2,3)(t1,1 − t2,1)

)
q

+(t1,2 − t2,2)(t1,1 − t2,1) + (2t1,0 − ~)(t1,3 − t2,3)

Change of variables (t1,1, t2,1)↔ (τ, τ̃) and affine rescaling:

τ =
1

t1,3 − t2,3
(t2,1 − t1,1) , τ̃ =

1

t1,3 − t2,3
(t1,3t1,1 − t2,3t2,1)

t =
(
−2(t1,3 − t2,3)2

) 1
3

(
τ +

(t1,2 − t2,2)2

4(t1,3 − t2,3)2

)
q̃ =

(
−(t1,3 − t2,3)

2

) 1
3
(
q +

t1,2 − t2,2

2(t1,3 − t2,3)

)
Then q̃(t, ~) satisfies the Painlevé 2 equation

~2∂2
t2 q̃ = 2q̃3 + tq̃ −

(
t1,0 −

~
2

)
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Gauge without apparent singularities

Gauge transformation to remove apparent singularity:

Ψ̌(λ, ~) =

(
1 0

− p
~(λ−q)

1
λ−q

)
Ψ(λ, ~) := J(λ, ~)Ψ(λ, ~)

Provides another Lax pair (Jimbo-Miwa type) without apparent
singularity:

Ľ(λ, ~) =

( p
~ λ− q

−((λ+ q)(t1,3 + t2,3) + t2,2 + t1,2) p
~ + Q3(λ, ~) − p

~ + P1(λ)

)
Ǎ(λ, ~) =

(
−(t1,3 + t2,3)λ− H

~ + t2,2 −1

(t1,3 + t2,3) p
~ + Q2(λ, ~) (t1,3 + t2,3)q + t1,2 + 2t2,2 − H

~

)
where

Q3(λ, ~) = −P(2)
∞,4λ

3 − (P
(2)
∞,4q + P

(2)
∞,3)λ2 − (P

(2)
∞,4q

2 + P
(2)
∞,3q + P

(2)
∞,2)λ

+P
(2)
∞,4q

3 + P
(2)
∞,3q

2 + P
(2)
∞,2q + P

(2)
∞,1 + ~t1,3)

Q2(λ, ~) = P
(2)
∞,4λ

2 + 2P
(2)
∞,4qλ+ P

(2)
∞,3λ+ (3P

(2)
∞,4q

2 + 2P
(2)
∞,3q + P

(2)
∞,2)
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Open questions and outlooks
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Open questions and outlooks

Non-perturbative quantities (wave function, Lax pairs, etc.) are
formal ~ trans-series ⇒ Can we obtain convergent solutions?
Possible solution: works of Costin [9, 10, 11, 12] ⇒ Write down the
RHP satisfied by Ψ(λ, ~). Make connections with (bi)orthogonal
polynomials RHP in the hermitian matrix models case.

Remove some of the admissibility conditions: simple ramification
points, smooth ramification points.

General connections with isomonodromic deformations? Require to
define in general the tangent space ∂ti,j and “admissible”
deformations of curves. Check that operators L may always be
written using spectral times derivatives. Prove that time evolutions
are Hamiltonian. Issue solved for d = 2 in [32, 33].

Study the change of Torelli marking ⇒ Hitchin’s equations for
choice of polarization in geometric quantization.

Consider classical spectral curves over C∗ (or more complicated base
curve) to study of Gromov–Witten invariants of toric Calabi–Yau
three-folds by mirror symmetry.
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