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How to make sense of an asymptotic series

A typical Gevrey-1 asymptotic series in physics
) < , n
99(])(2) = Z @q(i])zn» G5Lj> ~ Aqne
J

n=0

e How do we “sum” the asymptotic series?

e Is it possible to connect the series to the (path) integral and the series from other
saddles?



Resurgence theory



Borel resummation

o0

B = T

n=0

. /aplace transform

s(o)e) = [ a0

Borel resummation

Borel transform

The Borel resummation s(p)(z) reproduces the series ¢(z) in small z expansion



Borel resummation

)
8

If there is no obstruction along ¢ = arg z in the
/ (-plane (Borel plane)

) = / " ep(et ] 0)dc,

is a well defined integral.




Lateral Borel resummation

)
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If there is obstruction along ¢ = arg z (Stokes
C+ .
ray), one defines the lateral Borel resummations

ot

«> s+ = [ T e

0

and Stokes discontinuity

disc(p)(2) = 51.(#)(2) — s- () (2)-




Resurgent functions

Expansion near ¢,

3¢+ = —5, 2285, (6) 1+ 70

c / with regular functions 7,,(§) and

@w(g) = Z an,wgna

n>0
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Resurgent functions

Expansion near ¢,

B(Co+8) = 5025 (0) 170

c / with regular functions 7,,(§) and

@w(g) = Z an,wgna

n>0

)
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which is regarded as Borel transform of a

resurgent series

a
E n ~ n,w
(Pw(z) = Qnw? Anp,w = = .
n>0 ’




Resurgent functions and Stokes discontinuity

Resurgence at (,,

- B log(§) -
@(C) c @(Cw + 5) - 7SU}TM¢1U(£) + Tw (S)
In
Z implies Stokes discontinuity
. discgp(2) = Swe™S/%5_(py)(2)

with Stokes constant S,,.




Resurgent functions and Stokes discontinuity

Resurgence at (,,

- B log(§) -
@(C) c @(Cw + 5) - 7SU}TM¢1U(£) + Tw (S)
In
Z implies Stokes discontinuity
. discgp(2) = Su €™ 5/%5_(y)(2)

with Stokes constant S,,. \

new saddle: A, — Ay =




mal resurgent structure

Starting from one asymptotic series, one finds recursively resurgent asymptotic series,
which form a minimal resurgent structure:

vo(2) = {pw(2)} = {Sww}




Minimal resurgent structure

Starting from one asymptotic series, one finds recursively resurgent asymptotic series,
which form a minimal resurgent structure:

vo(2) = {pw(2)} = {Sww}

e {S,w } are new invariants, which are non-perturbative in nature.

e Sometimes S, can be interpreted as counting of BPS states.



Stokes automorphism

(Local) Stokes automorphism &y at angle ¢

acting on trans-series ®,,(2) = efA“’/ZsOw(Z)
0
a\)w
0 SR S S
. arg(A,,r—Ay)=¢
. 01




Stokes automorphism

(Local) Stokes automorphism &y at angle ¢

acting on trans-series ®,,(z) = e~ 4v/?p,(2)

02

w(C) 6(}5@1” =&, + Z Sww/q)w/.
arg(A, —Ay)=¢

H)

Global Stokes automorphism between two angles

.
Go0.= [ So

01<¢p<02

e Ordered product;

e Unique factorisation.



Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

e Let I' be lattice of elec./mag. charges with pairing (, ), functions X, : M — C*.



Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

e Let I' be lattice of elec./mag. charges with pairing (, ), functions X, : M — C*.

e Define symplectomorphism [Kontsevich,Soibelman][Gaiotto,Moore,Neitzke]
S(¢) = H Koges
YBPS:arg(—Zyppg) =P

where /C acts by

K

YBPS
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Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

e Let I' be lattice of elec./mag. charges with pairing (, ), functions X, : M — C*.

e Define symplectomorphism [Kontsevich,Soibelman][Gaiotto,Moore,Neitzke]
S(¢) = H Koges
YBPS:arg(—Zyppg) =P

where /C acts by

K

YBPS

5 X,y — Xw(l e O’(’prs)X

)Q('YBPS)<’Y;’YBPS>
YBPS

YBPS

e Global symplectomorphism (spectrum generator)

&(61,0,) = H &(¢

01 <p<H2

> Ordered product;
» Unique factorisation.



Stokes constants vs BPS invariants

Stokes constants BPS invariants
Stokes automorphism KS symplectomorphism

10



Example 1: Seiberg-Witten
theory



Seiberg-Witten theory and its BPS spectrum

4d N = 2 pure SU(2) theory has moduli space identified with family of spectral curves
[Seiberg, Wittne]
p2 +2A%coshz = 2u
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Seiberg-Witten theory and its BPS spectrum

4d N = 2 pure SU(2) theory has moduli space identified with family of spectral curves
[Seiberg, Wittne]
p2 +2A%coshz = 2u

Curve of marginal stability BPS spectrum
s [w e |u| < 1: Strong coupling
:l:((]? 1)7 i(17 1)

e |u| > 1: Weak coupling

+(1,0), *(4,1), L€Z
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Quantum periods

Quantum spectral curve
—h2" (x) 4+ 2A2 cosh(z)w(x) = Ev(x)

has WKB solutions

b(z, E) = exp (;.L /w p(z, E; h)dx)

12



Quantum periods

Classical spectral curve Quantum spectral curve
Hy(X) gives lattice I' = Z? with pairing (, )
—h2Y" () + 2A? cosh(z)y(x) = Ev(x)

has WKB solutions

b(z, E) = exp (;.L /w p(z, E; ﬁ)dx>
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Quantum periods

Classical spectral curve Quantum spectral curve
Hy(X) gives lattice I' = Z? with pairing (, )
—h2Y" () + 2A? cosh(z)y(x) = Ev(x)

has WKB solutions

b(z, E) = exp (;.L /w p(z, E; h)dx)

p(x, B;h)dz = TI{Y (E)R"

Quantum periods: IL,(E;h) :?{
Y n=0

Voros symbols: &, (E;h) = e (Eih) — #1157 (E) exp Z H(W”)(E)h%_1

n>1

12



Stokes automorphism

Borel singularities of quantum periods

e u=20

(0,-1)

(=1,=1) (1,1) (G (1,1)

(0,1)

4 (h) p(h)

13



Stokes automorphism

Borel singularities of quantum periods

e u=20

(0,-1)

(=1,=1) (1,1) (G (1,1)

e u=FE/2=4

.
(-1.-1) ©-1 @,-1 (-1,-1 -1

ITa(R) Iz (h) 13



Identification

A B cycles elec., mag. charges
Saddle points BPS states
Classical period H(WO) Central charge Z,
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Identification

A B cycles elec., mag. charges
Saddle points BPS states
Classical period H(WO) Central charge Z,
Voros symbol @, function &,
Stokes automorphism KS symplectomorphism
%HW - %H’Y + S’W' IOg(l - O”Y'e%r{;) X’Y - X”Y (1 - O-'YBPSX'YBPS)Q’YBPS <’Y7’YBPS>
Stokes constants S, BPS invariants Qy,.¢ (v, 78PS)
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Example 2: Complex

Chern-Simons theory




Action and saddle points

e Chern-Simons theory with gauge group SL(2,C) and action [Witten][Gukov]
t 2
S:—/ Tr{ANdA+-ANANA
87T M 3

_ 7 B o
—|—i Tr | ANdA+ - ANANA
8 M 3]
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Action and saddle points

e Chern-Simons theory with gauge group SL(2,C) and action [Witten][Gukov]
t 2
S:—/ Tr{ANdA+-ANANA
87T M 3

_ 7 B o
—|—i Tr | ANdA+ - ANANA
8 M 3]

e Saddles are flat connections
dA+ANA=0, A€ SL(2,C),

classified via holonomies

15



Non-Abelian saddles and state-integrals

e In complex Chern-Simons non-Abelian flat connections are also important with
asymptotic eXpansion [Dimofte,Gukov,Lenells,Zagier]
1

ZP) (M, h) ~ exp ( -

(v _ 1 () pn _
St ,55@) logh+ Y _ S/ h > h=2m/t.

n=0

16



Non-Abelian saddles and state-integrals

e In complex Chern-Simons non-Abelian flat connections are also important with
asymptotic eXpansion [Dimofte,Gukov,Lenells,Zagier]
1

ZP) (M, h) ~ exp ( -

(0 _ 1 - o(0) g _
9% 755@) lothrZSniJL ), h=2m/t.

n=0

e For hyperbolic 3-manifold M, 3 special non-Abelian flat connection called geometric
connection so that (Volume Conjecture)

S$P) = Vol(M) + i CS(M)

and Sfl’i)l (n > 0) are in the same algebraic field.
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Non-Abelian saddles and state-integrals

e In complex Chern-Simons non-Abelian flat connections are also important with
asymptotic eXpansion [Dimofte,Gukov,Lenells,Zagier]
1

ZP) (M, h) ~ exp ( -

(0 _ 1 - o(0) g _
9% 755@) lothrZSniJL ), h=2m/t.

n=0

e For hyperbolic 3-manifold M, 3 special non-Abelian flat connection called geometric
connection so that (Volume Conjecture)

S$P) = Vol(M) + i CS(M)

and Sfl’i)l (n > 0) are in the same algebraic field.
e The asymptotic series Z (p)(]w , ) for non-Abelian p can be computed by state integral

[Hikami][Andersen,Kashaev]

ZP)(h) ~ / P(®y(v))e™ @M dy, k= 27b>
CP

whose main ingredient is Faddeev’s quantum dilogarithm ®(v). 16



Example: figure eight complement

e Example: M = S3\4,

Z(P)(ﬁ) N/ @b(q})Qe*”ivzdv =:1Ic,(b).
€

P
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Example: figure eight complement

e Example: M = S3\4,

Z(P)(ﬁ) N/ @b(q})Qe*”ivzdv =:1Ic,(b).
€

P

Non-trivial non-Abelian flat connection

_ X 11h 697h>
Z4(h) =e* (1 +5us t+ 72V5) + ) ,

R 4 11h 697h> o
Zo(h) =ie ¥ (1 — Alh 4 e +) =iZ,(—h)

with V = Vol(5%\4;) = 2Im Liy(e™/3).
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Example: figure eight complement

e Example: M = S3\4;

Z(”)(h) N/ @b(,U)Qeffrivzdv =:1Ic,(b).
€

P

Non-trivial non-Abelian flat connection

e 11k 697h°
Z4(h) =e* (1 +5us t+ 72V5) + ) ,

R 4 11h 697h> o
Zo(h) =ie ¥ (1 — Alh 4 e +) =iZ,(—h)

with V = Vol(5%\4;) = 2Im Liy(e™/3).

e [z (b) factorises to holomorphic, anti-holomorphic blocks

. 42 -
with q = eme ,q=¢ il [Beem,Dimofte,Pasquetti]

Ig(b) ~ G°(9)G*(q) — b 'GH(§)G%(q).

17



Borel singularities

“Classical” Borel singularities [Gukov,Marino,Putrov][Gang-Hatsuda][Garoufalidis-Zagier]

Zg(h) Ze(h)
Z(h Zy(h
=A% -2V
—_—] . ——

Zg4(h) and Z.(h) form a minimal resurgent structure.

18



Borel singularities

More singularities due to multivaluedness of CS action and the state integral potential

[Garoufalidis][Witten][Gukov,Marino,Putrov]

Zy(1) Za(h)
Zynl /,T'i,ﬂ (H) .
AN 3
AN |
K +4m?
-2V
.

Not one trans-series but a family of trans-series but with the same power series
_pan?i
Zgn(h) = Zg(R)e™™ 7,

an2i

Zen(R) = Zo(h)e™*5

nez
19



Peacock pattern of Stokes rays

e Stokes rays in the Borel plane for the vector (Z,(h), Z.(h))*.

ir I

117 v

20



Non-trivial Stokes constants as BPS counting

Despite from trans-series in the same family, the Stokes constants are non-trivial integers!

e Generating series of Stokes constants in positive imaginary axis

Zg(h)
90 1048558 S/y(@) =1—8q—9¢° +18¢° + 46¢* +90¢° + ..., q= etmi/h,
169 #5580
" 1642 (Conjecture) It coincides with index Ind(0, 1; ¢) of dual 3d
*6
superconformal field theory! [Dimofte,Gaiotto,Gukov]
—9¢ 75
-8 '9 Ind(m, (;q) = TFH7H(—1)FQ%+‘73C€.

21



Non-trivial Stokes constants as BPS counting

Despite from trans-series in the same family, the Stokes constants are non-trivial integers!

e Generating series of Stokes constants in positive imaginary axis

Zg(h)
004 #4855 S/y(@) =1—8q—9¢° +18¢° + 46¢* +90¢° + ..., q= etmi/h,
164 #5580
" 1642 (Conjecture) It coincides with index Ind(0, 1; ¢) of dual 3d
*
superconformal field theory! [Dimofte,Gaiotto,Gukov]
—9¢ 75
-8 '9 Ind(m, (;q) = TFH7H(—1)FQ%+‘73C€.
‘ e The generating series for the other Stokes constants are also

identified with the index with magnetic flux turned on.

21



Full spectrum of Stokes constants

e (Conjecture) Complete set of Stokes constants can be solved!

e The Stokes g-series

Sfytg/(q) =1+ Z Sdcr’;:l:nqinv So‘n’;:tn €L

n=1

are given by bilinear expressions in fundamental solutions of the equation

ym+1((I) + ymfl(Q) - (2 - qm)ym(q) =[()

22



Turning on deformation

Zg(x; h) e Turning on deformation of hyperbolic structure
OO0 0000 0OCOOOBO00000 Zgo(h) = Zg,c(x; h) ~ e~ 2miv’ / Dy, (2)Pp (2 + u)e”"i(zz*‘l“z)dz. z=e"
J@,
e Generating series of Stokes constants in vertical towers
St (q) =1— (2272 +27' + 24z +22%)q
—(z72 4227+ 3+ 220+ 222 + O(¢®)
- [log(x)|
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Turning on deformation

Zg(x; h) e Turning on deformation of hyperbolic structure
OO0 0000 0OCOOOBO00000 Zgo(h) = Zg,c(x; h) ~ e~ 2miv’ / Dy, (2)Pp (2 + u)e”"i(zz*‘l“z)dz. z=e"
J@,
e Generating series of Stokes constants in vertical towers
St (q) =1— (2272 +27' + 24z +22%)q
—(z72 4227+ 3+ 220+ 222 + O(¢®)
- [log(x)|

e They coincide with the index Ind(m, z;¢) with the flavor
fugacity turned on.

23



Full solution of Stokes constants

e The Stokes g-series

S(:Tto_/ (51/'§ Q) =1+ Z SUJ’;:tn(x)qiny Scra’;:l:n(x) € Z[mil}

n=1

are bilinear expressions in fundamental solutions y,, (x; q) of

ym—&-l(w; (]) - (x2 +x— :L,qu)ym(l,; q) + xgym—l(l'; Q) = 0.

24



Full solution of Stokes constants

e The Stokes g-series
o0
Stzrto" (IL‘; Q) =1+ Z Sacr’;:tn(‘r)qiny Scra’;:l:n(x) S Z[xil}
n=1
are bilinear expressions in fundamental solutions y,, (x; q) of
ym—&-l(w; (]) - (xQ +r— :L,qu)ym(l,; q) + xgym—l(l'; Q) = 0.

e y..(z;q) are also solutions to g-difference equation A\(Sm, z,q™,q)

2
A(Se,2,4™,q) 0 Ym(w30) = Y Ci(2,q™, )ym(a’z59) = 0.
=0

E(S:E, x,1,1) is the A-polynomial with meridiam 22 and longitude S,.

24



Example 3: Topological string
theory




Topological string at conifold

Consider topo. string on a (non-)compact Calabi-Yau 3fold X with r Kdhler moduli ¢;.

e In large volume limit: t; — oo

Fy(t) =) Ngae ?¥, N,a€Q
d

GW invariants N, g count numbers of stable maps from worldsheet to X.

25



Topological string at conifold

Consider topo. string on a (non-)compact Calabi-Yau 3fold X with r Kdhler moduli ¢;.

e In large volume limit: t; — oo
t)=> Ngae %%,  Nya€Q
d

GW invariants N, g count numbers of stable maps from worldsheet to X.

e In maximal conifold point: t; — 0
Fg(A) = F5(A) + F5 (M)

where the regular part

‘Fr( ) Z g{nL}H)‘nb

n; >0
The conifold GW invariants ¢y, (5,1, which are in the same algebraic field, have no
clear geometric meaning (yet).

25



Resurgence of topological string?

It is difficult to study the resurgence of total free energy

F(Ags) =D Fe(N)g2o?

g>0

e According to gauge/gravity correspondence, this is the 't Hooft limit of a dual
1, SU(N;) gauge theory

Ai = ]\/vigs7 with N; — 0, gs — 0.

e Example: topological string on resolved conifold is dual to SU(N) Chern-Simons
theory.

26



Resurgence at finite NV

e We study instead the resurgence of conifold trans-series at finite N
a N
Dy (gs) = exp Fiy(gs) ~ess ZNVi(1 4 ) gsl < 1,
where

Filge) =Y Fi(Nga)gd~>.

920

and V;: Kéahler moduli at conifold point.
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Resurgence at finite NV

e We study instead the resurgence of conifold trans-series at finite N
a N
Dy (gs) = exp Fiy(gs) ~ess ZNVi(1 4 ) gsl < 1,

where

Filge) =Y Fi(Nga)gd~>.

920
and V;: Kéahler moduli at conifold point.

e Find the minimal resurgent structure

Poy;n(9s) = On(9s) = {Po;n} = {Soorin}

27



TS/ST correspondence

e Consider models with only one modulus with mirror curve ¥. One obtains a trace
class operator PX by quantising DY [Aganagic,Cheng,Dijkgraaf,Krefl,Vafa][Grassi,Hatsuda,Marino]
[Kashaev,Marino]

Y — px

28
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class operator PX by quantising DY [Aganagic,Cheng,Dijkgraaf,Krefl,Vafa][Grassi,Hatsuda,Marino]
[Kashaev,Marino]

Y — px

e The fermionic trace Zn (h) ~ Trp¥ + ... of px is related to the series ®(gs)

[Grassi-Hatsuda-Marino)

ZN(h) s CNg:N(I)N(gs)a gs = 1/h
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TS/ST correspondence

e Consider models with only one modulus with mirror curve ¥. One obtains a trace
class operator PX by quantising DY [Aganagic,Cheng,Dijkgraaf,Krefl,Vafa][Grassi,Hatsuda,Marino]
[Kashaev,Marino]

Y — px

e The fermionic trace Zn (h) ~ Trp¥ + ... of px is related to the series ®(gs)
[Grassi-Hatsuda-Marino)

ZN(h) s CNg:N(I)N(gs)a gs = 1/h

e [irst similarity with complex Chern-Simons: “state-integral” in terms of quantum

dilogarithm
Zn(h) = / P(®(2))e™2@) (.. )do
R

28



Example: local F,

Toric diagram Mirror curve

e +mpe“+eV+e V+u=0
me, e One true Kahler modulus asso. to comp. 4-cycle Fy

e One mass parameter my, asso. to non-comp. 4-cycle;

we set mp, = 1.

29



Example: local F,

Toric diagram Mirror curve

e +mpe“+eV+e V+u=0
me, e One true Kahler modulus asso. to comp. 4-cycle Fy

e One mass parameter my, asso. to non-comp. 4-cycle;

we set mp, = 1.

Conifold trans-series at N = 1 [Haghighat,Klemm,Rauch]
VFO

—0 2 Q. 4
Poy1(gs) =€ (14+Lgs + Bg2+..), Vi, = —

C =TImLis(i): Catalan’s constant.

29



State integral

e The trace class operator is
PR, = O]Eol, Op, =€¢"+e *+e& +e?

with commutation relation [x,y] = if.

30



State integral

e The trace class operator is
PR, = O]Eol, Op, =€¢"+e *+e& +e?

with commutation relation [x,y] = if.

e The first trace has integral representation [Kashaev,Marino,Zakany]
1 Py (x +ib/4)? 9
Zy(h) =T b)=— | —————=e"*dz, h=mnb".
1(7) = Tror, (b) 2b/R<I>b(:1;—ib/4)2e o T

30



State integral

e The trace class operator is
PR, = O]Eol, Op, =€¢"+e *+e& +e?

with commutation relation [x,y] = iA.

e The first trace has integral representation [Kashaev,Marino,Zakany]
1 Py (x +ib/4)? 9
Z1(h) = Trpp,(b) = — | ————5¢""dz, h=mb’
{0 = Tom6) = o | e g AT

It has two saddle points with fluctuation

(1)01;1(93)7 (I)Uz;l(gs) = i(I)al;l(_gs)-
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State integral

e The trace class operator is
PR, = O]Eol, Op, =€¢"+e *+e& +e?

with commutation relation [x,y] = iA.

e The first trace has integral representation [Kashaev,Marino,Zakany]
1 Py (x +ib/4)? 9
Z1(h) = Trpp,(b) = — | ————5¢""dz, h=mb’
{0 = Tom6) = o | e g AT

It has two saddle points with fluctuation
(1)01;1(93)7 (I)Uz;l(gs) = i(I)al;l(_gs)-

e Sccond similarity with complex CS: Trpp, factorises to holomorphic and
anti-holomorphic blocks

Trps,(0) = — (Go(@)ao(@) + 86~ 00(0) (@)

30



Resurgent structure

Third similarity: Vertical towers of Borel singularities

q’m:l@s) q’dz:l(!}ﬁ)
. .
. .
2V]Fn 72V]Fn
:
. .

Two families of trans-series with the same power series

CI’al,n;l(gs) = (I’al;l(gs)einia

(I)UQ’T“’l (gs) = (I)UQ;l (gs)einE .

31



Stokes constants

Stokes constants
4’01:1(.(]5)

269 85752

17¢ %1048

Ge ;—192

3¢ e36

e ;—8

D U,
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Stokes constants

Stokes constants

4’01:1(95)
—26¢ ;—5752
17¢ %1048
Ge ;—192
3e %36
Ge ;—8
I S TR

Fourth similarity: The Stokes g-series

Sfrtcr’(q) = Z SUU’;:I:nqin/2

n=1

are given by bilinear combinations in fundamental solutions of

the g-difference equation
3 1 1
(1-gq22)y(¢*z;9) —¢"/*(2— q)y(gz; 9) + 42 (1 — g2 2)y(w; q) = 0

evaluated at © = 1.
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Stokes constants

Stokes constants

4’01:1(95)
—26¢ ;—5752
17¢ %1048
Ge ;—192
3e %36
Ge ;—8
I S TR

Fourth similarity: The Stokes g-series

Sfrtcr’(q) = Z SUU’;:I:nqin/2

n=1

are given by bilinear combinations in fundamental solutions of

the g-difference equation
3 1 1
(1-gq22)y(¢*z;9) —¢"/*(2— q)y(gz; 9) + 42 (1 — g2 2)y(w; q) = 0

evaluated at © = 1.

What are the BPS states they are counting?

32



‘Poul(ﬂs)

9901;1(95) ~ 7

N =2
Walz‘Z(gS)
21
®—29
20 )
15
6
o1
o4 |
*-6
15 ‘

@01;2(93) ~ Z3
Pon;2(gs) = 9001:,1(93)_1 o8



Conclusions and open

questions




Conclusions

e Stokes constants define new non-perturbative invariants.

e In some models (SW theory, complex Chern-Simons, conifold topological string) they
are non-trivial integers and are BPS countings,

e and they can be solved completely.
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Conclusions

e In some models (SW theory, complex Chern-Simons, conifold topological string) they

Stokes constants define new non-perturbative invariants.

are non-trivial integers and are BPS countings,

and they can be solved completely.

Open questions

Proof or physical justification of BPS interpretation of Stokes constants in complex

Chern-Simons? [3d-3d correspondence]

Enumerative meaning of the integer Stokes constants in conifold topological string?
Pattern of Borel singularities as IV grows larger in conifold topological string?
Resurgent structure of conifold topological string on compact Calabi-Yau?

Solution to Riemann-Hilbert problem related to Stokes automorphism?

[Gaiotto,Moore,Neitzke|[Bridgeland]

34



Thank you for your attention!
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