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DEFINITION (Ecalle 1981) Let ⌦ Ä C be closed and discrete.

p'p⇠q P Ct⇠u is called ⌦-continuable if one can follow its analytic
continuation along any path starting in its disc of convergence and
avoiding ⌦.

Elementary examples: Meromorphic functions, algebraic functions.
Here, principal branch assumed to be regular at 0, but maybe 0 P ⌦:
p'1p⇠q :“ ´ 1

⇠ logp1 ´ ⇠q and Li2p⇠q :“ ≥⇠
0 p'1p⇠1qd⇠1 are ⌦-continuable

with ⌦ :“ t0, 1u.
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Example related to the Stirling series:

pµp⇠q :“ ⇠´2
´⇠

2
coth

⇠

2
´ 1

¯
“ 1

12 ´ 1
360

⇠2

2! ` 1
1260

⇠4

4! ´ . . . P Ct⇠u

meromorphic, poles on 2⇡iZ˚ „„B 2⇡iZ˚-continuable.
Its Laplace transform is the log of the normalized Gamma function

µpzq “ log

ˆ
�pzq

?
2⇡zz´ 1

2 e´z

˙
„ µ̃pzq “ 1

12
z´1 ´ 1

360
z´3 ` 1

1260
z´5 ` . . .

A less elementary example: Denote by W0pxq ° W´1pxq the real
branches of the Lambert W fcn for x P p´e´1, 0q (solving w ew “ x).

p�p⇠q :“ 1?
2⇡

`
W0 ´ W´1

˘
p´e´1´⇠q “ ⇠1{2

�p3{2q ` ⇠3{2

12�p5{2q ` ⇠5{2

288�p7{2q `. . . P ⇠1{2Ct⇠u

is 2⇡iZ-continuable [slight generalization needed], its Laplace transform is

z´3{2eµpzq “ �pzq?
2⇡zz`1e´z

„ z´3{2eµ̃pzq “ z´3{2` 1

12
z´5{2` 1

288
z´7{2`. . .

[One can deal with ⇠cCt⇠u provided <e c ° ´1.]



5/24

DEFINITION (Ecalle 1985, Candelpergher-Nosmas-Pham 1993)

p'p⇠q P Ct⇠u [or ⇠cCt⇠u or sum of such] is called endlessly continuable if, for
every L ° 0, there exists a finite ⌦L Ä C such that one can follow the
analytic continuation along any path of length § L starting in the disc of
convergence and avoiding ⌦L.

The singular locus ⌦ :“ î
L°0 ⌦L may be dense in C but you only see

finitely many obstacles at a time. This more general situation occurs in
WKB (but if ⌦ closed discrete, then we’re back to ⌦-continuability).

DEFINITION A resurgent series is any formal series whose formal Borel
transform is an endlessly continuable germ.

A resurgent function is any function which can be obtained from an
endlessly continuable germ by Laplace transform (not necessarily in the
direction of R°0).
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THEOREM (Ecalle) Resurgent series are stable under multiplication
and nonlinear operations, e.g. substitution into a convergent power series.

So it’s not a surprise that eµ̃pzq, the exponential of the Stirling series, is
also resurgent. This also “explains” why resurgent series are so abundant
in nature...

A related topic is “alien calculus”: the use of Ecalle’s alien operators,
which behave nicely w.r.t. multiplication and allow to measure
singularities in the Borel plane so as to handle the Stokes phenomena...

The proof of the theorem requires the analysis of the counterpart of
multiplication in the Borel plane, which is the convolution product.

Resurgent series are stable under multiplic˝ ô endlessly continuable fcns
are stable under convolution.

We now review the basic arguments behind the theorem: How to follow
the analytic continuation of the convol ˝ of endlessly continuable fcns?

Similar arguments allow to handle the Hadamard product of endlessly
continuable fcns = resurgent version of the Hadamard mult˝ thm [1898].

This will serve as a preparation for the study of the Moyal star product of
resurgent series in the last part of the talk.
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DEFINITION The convolution product of two germs is

f ˚ gp⇠q :“ B
`
pB´1f qpB´1gq

˘
“

ª ⇠

0
f p⇠1qgp⇠ ´ ⇠1qd⇠1.

The Hadamard product of f p⇠q “ ∞
n•0 an⇠

n and gp⇠q “ ∞
n•0 bn⇠

n is

f d gp⇠q :“
ÿ

n•0

anbn⇠
n “

¿

C⇢

d⇣

2⇡i⇣
f p⇣qgp ⇠

⇣ q,

where C⇢ “ anticlockwise circle of radius ⇢, 0 † ⇢ † Rf , |⇠| † ⇢Rg .

THEOREM Given A,B Ä C closed and discrete, f A-continuable, g
B-continuable,

(i) ⌦1 :“ t0u Y pA ¨ Bq is closed and discrete, f d g is ⌦1-continuable;

(ii) if ⌦2 :“ A Y B Y pA ` Bq is closed and discrete, then
f ˚ g is ⌦2-continuable.
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Part (i) [LSS 2020a] can be viewed as a refinement of the statement
about the principal branch given by Hadamard and Borel in 1898. Borel
also says something about the analytic continuation to other sheets...

The necessity of including 0 among the possibly singular points of f d g
on the other sheets was noted by Borel (who gives credit to E. Lindelöf
for that point). Simple example: f p⇠q :“ ´ logp1 ´ ⇠q is t1u-continuable,
but f d f is not; in fact, f d f “ Li2 is t0, 1u-continuable.
Basic idea translated from Borel’s own words: “this expression of f d g
stays valid if one deforms the integration contour without letting it cross
any singular point of the integrand” and, “the contour having been fixed
in an arbitrary manner, one obtains the analytic continuation of f d g by
moving ⇠ in the plane, provided the singular points of the integrand do
not cross the integration contour”.

Throughout his 1898 paper, Borel seems to keep in mind the possibility
of going to the non-principal sheets and dealing with multivalued analytic
continuation, yet reluctantly so, since when he explicitly mentions that
possibility he tends to recommend to discard it! (“It seems to us useless
to insist on the latter point... one would be led to complicated
statements...”).
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However, he puts in a footnote an idea that has been successfully
adapted to study the analytic continuation of the convolution f ˚ g of
endlessly continuable germs in [Ecalle 1981], [CNP 1993] (Part (ii)).

Borel writes f d gp⇠q “ ∂
C

dx
2⇡ix f

`
1
x

˘
gp⇠xq, with C “ C⇢´1 and:

“Let us conceive the closed contour C as a flexible extensible
thread, the singular points of f

`
1
x

˘
as pins stuck into the plane,

the singular points of gp⇠xq as pins that travel as ⇠ moves. It
is necessary and su�cient that the thread always part the two
systems of pins. Now, this will always be possible, by means of
a suitable deformation, if, while travelling, the second pins never
come to hit the first ones (...); the thread may acquire a very
complicated form, but this is harmless.”

In the case of the convolution product f ˚ gp⇠q “ ≥⇠
0 f p⇠1qgp⇠ ´ ⇠1qd⇠1,

instead of the closed contour C “ C⇢´1 , it is the line segment r0, ⇠s that
must be deformed: the analytic continuation of f ˚ g along � at ⇠ “ �psq
is

≥
Hs

f p⇠1qgp�psq ´ ⇠1qd⇠1 with suitable Hs going from 0 to �psq.
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[S 2013,16] for (ii): Contruct explicitly the deformation when ⇠ “ �psq
moves in the complex plane without meeting A Y B Y pA ` Bq, by
applying to the initial integration contour r0, �p0qs a homeomorphism  s

obtained as the flow at time s of an explicit non-autonomous vector field.

A benefit of such a detailed rigorous proof with respect to the arguments
given in [Ecalle 1981] or [CNP 1993] is that it allows for quantitative
estimates which, in turn, can be adapted to prove Ecalle’s theorem on
the stability of the space of resurgent series under nonlinear operations
and not only multiplication of two factors [S 2015], [Kamimoto-S 2020].

Adaptation to the case (i) of the Hadamard product [LSS 2020a]: Given
� : r0, 1s Ñ Cz⌦1, we wish to construct a continuous family p sqsPr0,1s
of Lipschitz homeomorphisms so that  0 “ IdC and, for all s P r0, 1s,

↵ P t0u Y A ñ  sp↵q “ ↵, � P Bzt0u ñ  s

`�p0q
�

˘
“ �psq

� . (1)

This way, for ⇠ near �psq, cont�|spf d gqp⇠q “
¿

 spC⇢q

d⇣

2⇡i⇣
f p⇣qg

´ ⇠

⇣

¯
.
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Indeed, ⇣0 P C⇢ ñ ⇣0 R t0u Y A ñ  sp⇣0q R t0u Y A,

and ⇣0 P C⇢ ñ �p0q
⇣0

R B ñ �psq
 sp⇣0q R B (because �psq

 sp⇣0q “ � would

necessitate  sp⇣0q “ �psq
� , whence ⇣0 “ �p0q

� ),

therefore  spC⇢q avoids the fixed singular points 0 or ↵ and the moving

singular points �psq
� .

We may define  s as the flow map between time t “ 0 and time t “ s
for the non-autonomous vector field

d⇣

dt
“ X pt, ⇣q :“ ⌘p⇣q ⇣

�ptq�
1ptq, (2)

with any Lipschitz function ⌘ : C Ñ r0, 1s such that

↵ P Azt0u ñ ⌘p↵q “ 0, � P Bzt0u ñ ⌘
`�ptq

�

˘
“ 1

(necessarily inft,� dist
`�ptq

� ,Azt0u
˘

° 0). The conditions (1) are fulfilled:

↵ P t0u Y A ñ X pt,↵q “ 0, � P Bzt0u ñ X
`
t, �ptq

�

˘
“ �1ptq

� .
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Details for Part (ii) when A and B contain 0 [S 2013,16]:

Given � : r0, 1s Ñ Cz⌦2 with ⌦2 “ A ` B , use

X p⇣, tq :“ ⌘Ap⇣q
⌘Ap⇣q ` ⌘B

`
�ptq ´ ⇣

˘�1ptq

and its flow, where ⌘A, ⌘B : C Ñ r0, 1s have been selected so that

⌘Ap⇣q “ 0 ô ⇣ P A, ⌘Bp⇣q “ 0 ô ⇣ P B .

Notice that the denominator stays ° 0.

The study of the Hadamard product in [LSS 2020a] was a prelude to...
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MOYAL STAR PRODUCT & ALGEBRO-RESURGENT SERIES

Snapshot: The Borel transform w.r.t. t “ i~ of a Moyal star product can
be written in terms of the Borel transforms of its factors, f p⇠, q, pq and
gp⇠, q, pq, and the formula appears as a mixture of convolution with
respect to ⇠ and Hadamard product: it involves the Hadamard product
f p⇠1, q, p ` ⇠3q d gp⇠2, q ` ⇠3, pq with respect to ⇠3 for fixed q, p, ⇠1, ⇠2,
and then a convolution-like integration with respect to ⇠1, ⇠2, ⇠3.

To handle analytic continuation in such a many-variable context, we need
to put restrictions on the singular locus of f and g .

“Algebro-resurgence” [Garay-de Goursac-van Straten 2014]:

f , g P Ct⇠, q, pu have analytic continuation away from a proper algebraic
subvariety of C3 (or C2N`1 when dealing with deformation quantization
with N degrees of freedom).
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Given a Poisson structure with constant coe�cients on M Ä Rd

⇡ “
ÿ

1§i†j§d

⇡i,jBi ^ Bj , ⇡j,i “ ´⇡i,j P R, Bi :“ B
Bxi ,

we can write the Poisson bracket in C8pMq as

tf , gu “ µ˝Ppf bgq, P :“
ÿ

1§i,j§d

⇡i,jBi bBj , µ :“ multiplication

and the corresponding Moyal star product is defined C8pMqrrtss by

f̃ ‹M g̃ “ µ ˝ exp
´ tP

2

¯`
f̃ b g̃

˘
“ f̃ g̃ ` t

2

ÿ

i,j

⇡i,j Bi
`
f̃

˘
Bj

`
g̃

˘

` 1

2!

´ t

2

¯2 ÿ

i,j,k,`

⇡i,j⇡k,` BiBk
`
f̃

˘
BjB`

`
g̃

˘
` ¨ ¨ ¨

It is an associative non-commutative deformation of the product of
C8pMq in the direction of ⇡: f ‹M g ´ g ‹M f “ ttf , gu ` Opt2q.
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By a linear change of variables, we reduce the situation to the case of the
standard Poisson structure in M 1 Ä R2N (where 2N = rank of r⇡i,j s),
with coordinates pq1, . . . , qN , p1, . . . , pNq.
For instance, if N “ 1, tf , gu “ Bpf Bqg ´ Bqf Bpg and

f̃ ‹M g̃ “ f̃ g̃ `
ÿ

k•1

1

k!

´ t

2

¯k kÿ

n“0

p´1qk´n

ˆ
k
n

˙´
Bn
p Bk´n

q f̃
¯´

Bk´n
p Bn

q g̃
¯
.

Example: With f “ p1´ pq´1 and gpq, pq analytic both independent of t,

p1 ´ pq´1 ‹M gpq, pq “
ÿ

k•0

´ t

2

¯k
p1 ´ pq´k´1 Bk

qgpq, pq

factorially divergent in general, will be resurgent in t under appropriate
assumptions on g .
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Using slightly modified Borel transform B‹ : tk fiÑ ⇠k{k! (no shift of
exponent), for fixed pq, pq,

B‹
`
p1 ´ pq´1 ‹M gpq, pq

˘
“

ÿ

k•0

´⇠

2

¯k
p1 ´ pq´k´1 1

k!
Bk
qgpq, pq

“ 1

1 ´ p
g

´
q ` ⇠

2p1 ´ pq , p
¯

has a finite radius of convergence in ⇠ (unless q fiÑ gpq, pq extends to C)
is endlessly continuable in ⇠ if g is endlessly continuable in its 1st arg:

p1 ´ pq´1 ‹M gpq, pq is then resurgent in t.

Other example:

B‹
`
logp1´pq‹M logp1´qq

˘
“ logp1´pq logp1´qq`Li2

´ ⇠

2p1 ´ qqp1 ´ pq
¯
.
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DEFINITION (Garay-de Goursac-van Straten) Given r • 1, the set of
algebro-resurgent germs in r variables is

pQA
r :“

!
p' P Ctz1, . . . , zru | DV proper algebraic subvariety of Cr s.t.

p' has analytic continuation along any path � Ä CrzV
having its initial point �p0q close enough to 0

)
.

Correspondingly, an algebro-resurgent series is any formal series

'̃pt, z2, . . . , zr q P Ctz2, . . . , zrurrtss s.t. B‹p'̃q “ p'p⇠, z2, . . . , zr q P pQA
r .

THEOREM [LSS 2020b] For any constant coe�cient Poisson structure in
d variables, the Moyal star product of two algebro-resurgent series
in d ` 1 variables is an algebro-resurgent series in d ` 1 variables.

For the proof, it is su�cient to consider the standard Poisson structure
with d “ 2N, using canonical coordinates q1, . . . , qN , p1, . . . , pN .

Moreover, it is easier to work with the standard star product

f̃ ‹S g̃ :“
ÿ

k1,...,kN•0

tk1`¨¨¨`kN

k1! ¨ ¨ ¨ kN !
´

Bk1
p1 ¨ ¨ ¨ BkN

pN f̃
¯´

Bk1
q1 ¨ ¨ ¨ BkN

qN g̃
¯
.
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This turns out to be su�cient because T
`
f̃ ‹S g̃

˘
“

`
T f̃

˘
‹M

`
Tg̃

˘
with

a “transition operator”

T :“ exp
´

´ t

2

ÿ
Bqj Bpj

¯
, T´1 “ exp

´ t

2

ÿ
Bqj Bpj

¯

and

THEOREM [LSS 2020b]

(i) Algebro-resurgent series in 2N ` 1 variables are stable under standard
star product.

(ii) Algebro-resurgent series in 2N ` 1 variables are stable under the
transition operators T and T´1.

The proof relies on integral formulas for the Borel counterparts of the
standard star product and the transition operator,

f f g :“ B‹
`
pB´1

‹ f q ‹S pB´1
‹ gq

˘
, pT pf q :“ B‹ ˝ T ˝ B´1

‹ pf q
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LEMMA (N=1 for simplicity) Suppose f “ f p⇠, q, pq, g “ gp⇠, q, pq
holomorphic in D⌧ ˆ D⌧ ˆ D⌧ . Pick " P p0, ⌧q and "1 P p0, "2q.
Then, for any p⇠, q, pq P D"1 ˆ D⌧´" ˆ D⌧´" and ⇢ P

`
"1
" , "

˘
,

f f gp⇠, q, pq “ d3

d⇠3

ª ⇠

0
d⇠1

ª ⇠´⇠1

0
d⇠2

ª ⇠´⇠1´⇠2

0
d⇠3

¿

C⇢

d⇣

2⇡i⇣
f p⇠1, q, p ` ⇠3

⇣
q gp⇠2, q ` ⇣, pq,

pT˘1f p⇠, q, pq “ d

d⇠

ª ⇠

0
d⇠1

¿

C⇢

d⇣

2⇡i⇣
f p⇠ ´ ⇠1, q ` ⇣, p ¯ ⇠1

2⇣
q.

Remark: The statement of Part (i) can be found in [GGS 2014], however there is a gap in their

proof, due to a mistake in their formula for f.

These formulas and their multidimensional analogues allow to prove

f , g P pQA
2N`1 ùñ f f g P pQA

2N`1 and pT˘1f P pQA
2N`1,

whence the theorem follows.
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Technical lemma

(i) If f p⇠, q, pq, gp⇠, q, pq P pQA
3 , then the formula

F p⇠1, ⇠2, ⇠3, q, pq :“
¿

C⇢

d⇣

2⇡i⇣
f p⇠1, q, p ` ⇠3

⇣
q gp⇠2, q ` ⇣, pq

defines a germ F P pQA
5 .

(ii) If P is a polynomial in r variables vanishing at p0, . . . , 0q and
F pz1, . . . , zr q P pQA

r , then the formula

G pz , z2, . . . , zr q :“
ª Ppz,z2,...,zr q

0
F pz1, z2, . . . , zr qdz1

defines a germ G P pQA
r .

(iii) If P is a polynomial in r ´ 1 variables vanishing at p0, . . . , 0q and
F pz1, . . . , zr q P pQA

r , then the formula

Hpz2, . . . , zr q :“
ª Ppz2,...,zr q

0
F pz1, z2, . . . , zr qdz1

defines a germ H P pQA
r´1.
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PROSPECTS

(1) Hadamard product: What about the nature of the singularities? The
branches of the analytic continuation of f d g cannot be singular outside
t0u Y pA ¨ Bq. Cf. case of convolution: the singularities located in A Y B Y pA ` Bq can be

analyzed by means of Ecalle’s alien operators.

For singular points adherent to the principal sheet: R. Pérez-Marco 2020,
“Monodromies of singularities of the Hadamard and eñe product” arXiv:2009.14099

“Local monodromy formula of Hadamard products” arXiv:2011.10497.

(2) What about the singularities of B‹
`
f̃ ‹M g̃

˘
, B‹

`
f̃ ‹S g̃

˘
, B‹ ˝T˘1

`
f̃

˘
?

(3) Can one design a framework for Resurgence in Deformation
Quantization that would be more general than Algebro-Resurgence, so as
to allow for larger singular loci in the Borel plane?

(4) What about non-constant Poisson structures? Take
⇡i,j “ ⇡i,jpx1, . . . , xdq analytic in M Ä Rd and use the explicit
B.Fedosov’s star product (1985) in the symplectic case or M.Kontsevich’s
star product (1997) in the general case. Might Ecalle’s Mould Calculus
play a role? (Algebraic combinatorics methods, adapted e.g. for BCH.)
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