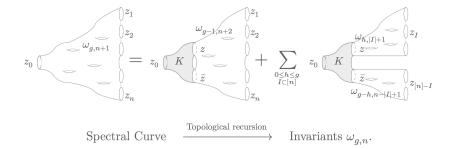
◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Enumerative algebraic geometry, topological recursion, and integrable hierarchies

Danilo Lewański IHES and IPhT, Paris

November the 17th, 2020

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
• 0	0000000	ooooooooooooooooooooooooooooooooooo	00000	000

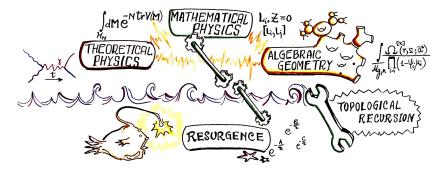


Let us define ENT the class of enumerative problems for which there exists a proof that the solution can be generated by TR and/or ABCD-TR and/or GR, for some initial data.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Introduction	Hurwitz theory 0000000	Chiodo classes Ω	Integrability for Ω	Resurgence 000

I am interested in expanding ENT as well as in the following picture for ENT:



Algebraic geometry: cohomological field theories, moduli spaces of curves,

Mathematical physics: integrable hierarchies,

Theoretical physics (GW / top strings / ...much more) or statistical physics (matrix models) or any motivation for the enumerative problem,

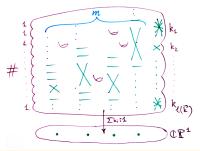
・ ロ ト ス 厚 ト ス ヨ ト ・

3

Sac

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	000000	000000000000000000000000000000000000000	00000	000

An example: Hurwitz numbers



Definition (Hurwitz numbers)

For a partition α of size d, let $C_{\alpha} \in \mathbb{Q}[\mathfrak{S}_d]$ be the formal sum of all permutations in \mathfrak{S}_d of cycle type α . For a non-negative integer g and a partition k of d of length n define

$$h_{g;k}^{\bullet} \coloneqq \frac{1}{d!} [C_{id}] \cdot C_k \frac{C_{(2)}^m}{m!} C_{(1,1,\ldots,1)}, \qquad h_{g;k}^{\circ} \coloneqq \frac{1}{d!} [C_{id}]^{\circ} \cdot C_k \frac{C_{(2)}^m}{m!} C_{(1,1,\ldots,1)}$$

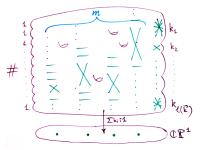
where m = 2g - 2 + n + d. $[C_{ld}]^{\circ}$ only counts the products of tuples generating transitive subgroups. Equivalently, $h_{g;k}^{\circ}$ and $h_{g;\bar{k}}^{\circ}$ are related by inclusion-exclusion.

They enumerate branched covers with prescribed ramification conditions

They enumerate constellations by lifting the graph passing through all branch points.

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	000000	000000000000000000000000000000000000000	00000	000

An example: Hurwitz numbers



Definition (Hurwitz numbers)

For a partition α of size d, let $C_{\alpha} \in \mathbb{Q}[\mathfrak{S}_d]$ be the formal sum of all permutations in \mathfrak{S}_d of cycle type α . For a non-negative integer g and a partition k of d of length n define

$$h_{g;k}^{\bullet} := \frac{1}{d!} [C_{id}] \cdot C_k \frac{C_{(2)}^m}{m!} C_{(1,1,\ldots,1)}, \qquad h_{g;k}^{\circ} := \frac{1}{d!} [C_{id}]^{\circ} \cdot C_k \frac{C_{(2)}^m}{m!} C_{(1,1,\ldots,1)}$$

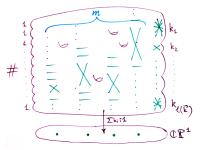
where m = 2g - 2 + n + d. $[C_{id}]^\circ$ only counts the products of tuples generating transitive subgroups. Equivalently, $h_{g;k}^{\circ}$ and $h_{g;k}^{\circ}$ are related by inclusion-exclusion.

They enumerate branched covers with prescribed ramification conditions

They enumerate constellations by lifting the graph passing through all branch points

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	000000	000000000000000000000000000000000000000	00000	000

An example: Hurwitz numbers



Definition (Hurwitz numbers)

For a partition α of size d, let $C_{\alpha} \in \mathbb{Q}[\mathfrak{S}_d]$ be the formal sum of all permutations in \mathfrak{S}_d of cycle type α . For a non-negative integer g and a partition k of d of length n define

$$h_{g;k}^{\bullet} := \frac{1}{d!} [C_{id}] \cdot C_k \frac{C_{(2)}^m}{m!} C_{(1,1,\ldots,1)}, \qquad \qquad h_{g;k}^{\circ} := \frac{1}{d!} [C_{id}]^{\circ} \cdot C_k \frac{C_{(2)}^m}{m!} C_{(1,1,\ldots,1)}$$

where m = 2g - 2 + n + d. $[C_{id}]^{\circ}$ only counts the products of tuples generating transitive subgroups. Equivalently, $h_{g;k}^{\circ}$ and $h_{g;k}^{\circ}$ are related by inclusion-exclusion.

They enumerate branched covers with prescribed ramification conditions.

They enumerate constellations by lifting the graph passing through all branch points.

Sac

Algebro-geometric side

In terms of the intersection theory of the moduli space of curves:

Theorem (Ekedahl, Lando, Shapiro, Vainshtein ('99))

Let g, n be non-negative integers such that 2g - 2 + n > 0. For a partition k of length n and size d we have :

$$h_{g;k}^{\circ} = \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!} \int_{\overline{\mathcal{M}}_{g,n}} \frac{(c(\mathbb{E}^{\vee}) = 1 - \lambda_{1} + \dots + (-1)^{g} \lambda_{g})}{\prod_{i=1}^{n} (1 - k_{i} \psi_{i})}$$

where:

•
$$h_{g;k}^{\circ} = [C_{id}]^{\circ} \cdot C_k \frac{(C_{(2)})^{\prime \prime \prime}}{m!} C_{(1,1,\ldots,1)}$$

- By Riemann Hurwitz m = (2g 2 + n + d)
- Is the Hodge bundle

Theorem (Mumford formula)

$$c(\mathbb{E}^{\vee}) = \exp\left(\sum_{m=1}^{\infty} (-1)^m \frac{B_{m+1}}{m(m+1)} \left[\kappa_m - \sum_{i=1}^n \psi_i^m + \frac{1}{2} j_* \frac{(\psi')^m - (-\psi'')^m}{\psi' + \psi''}\right]\right)$$

where *j* is the boundary morphism representing the boundary divisor at one of the branches of the node, ψ', ψ'' are the ψ classes at the branches of the node, B_m are Bernoulli numbers.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Algebro-geometric side

In terms of the intersection theory of the moduli space of curves:

Theorem (Ekedahl, Lando, Shapiro, Vainshtein ('99))

Let g, n be non-negative integers such that 2g - 2 + n > 0. For a partition k of length n and size d we have :

$$h_{g;k}^{\circ} = \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!} \int_{\overline{\mathcal{M}}_{g,n}} \frac{(c(\mathbb{E}^{\vee}) = 1 - \lambda_{1} + \dots + (-1)^{g} \lambda_{g})}{\prod_{i=1}^{n} (1 - k_{i} \psi_{i})}$$

where:

•
$$h_{g;k}^{\circ} = [C_{id}]^{\circ} \cdot C_k \frac{(C_{(2)})^{\prime\prime\prime}}{m!} C_{(1,1,\ldots,1)}$$

- By Riemann Hurwitz m = (2g 2 + n + d)
- E is the Hodge bundle

Theorem (Mumford formula)

$$c(\mathbb{E}^{\vee}) = \exp\left(\sum_{m=1}^{\infty} (-1)^m \frac{B_{m+1}}{m(m+1)} \left[\kappa_m - \sum_{i=1}^n \psi_i^m + \frac{1}{2} j_* \frac{(\psi')^m - (-\psi'')^m}{\psi' + \psi''}\right]\right)$$

where *j* is the boundary morphism representing the boundary divisor at one of the branches of the node, ψ', ψ'' are the ψ classes at the branches of the node, B_m are Bernoulli numbers.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - �� < ♡ < ♡

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	000000	000000000000000000000000000000000000000	00000	000

Mathematical physics side In terms of integrable hierarchies:

Theorem (Okounkov, '00)

The partition function of double Hurwitz numbers

$$\mathcal{Z}(p,eta;ec{p},eta') \coloneqq \sum_{d,m;\mu,
u\vdash d} h^{m{e}}_{g;\mu,
u} q^d eta^m p_\mu, p'_
u,$$

$$h_{g;\mu,\nu}^{\bullet} = \frac{1}{d!} [C_{id}] . C_{\mu} \frac{C_{(2)}^{m}}{m!} C_{\nu}$$

Sac

is a tau-function of the 2D Toda integrable hierarchy.

Corollary (Okounkov, '00)

The partition function of Hurwitz numbers is a tau-function of the KP integrable hierarchy.

- It extends to many other Hurwitz problems (different ramification conditions)
- It proves a recursion for Hurwitz numbers conjectured by Pandharipande
- lacksquare The key part of the proof is to express (changing to Schur functions basis)

$$\mathbf{h}_{g;\mu,\nu}^{\bullet} = \frac{1}{\prod \mu_l \prod \nu_j} \cdot \left\langle \alpha_{\mu_1} \alpha_{\mu_2} \cdots \alpha_{\mu_{\ell}(\mu)} \frac{\mathcal{F}_2 \mathcal{F}_2 \cdots \mathcal{F}_2}{m!} \alpha_{-\nu_1} \alpha_{-\nu_2} \cdots \alpha_{-\nu_{\ell}(\nu)} \right\rangle$$

for the bosonic operators $\alpha_k, [\alpha_k, \alpha_l] = k \delta_{k,l}$ acting on the Fock space and some zero energy operators \mathcal{F}_2 representing simple ramifications.

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	000000	000000000000000000000000000000000000000	00000	000

Mathematical physics side In terms of integrable hierarchies:

Theorem (Okounkov, '00)

The partition function of double Hurwitz numbers

$$\mathcal{Z}(\boldsymbol{p},\boldsymbol{\beta};\vec{\boldsymbol{p}},\vec{\boldsymbol{p}}') := \sum_{\substack{d,m;\mu,\nu \models d}} h^{\bullet}_{g;\mu,\nu} q^{d} \boldsymbol{\beta}^{m} \boldsymbol{p}_{\mu}, \boldsymbol{p}'_{\nu}, \qquad h^{\bullet}_{g;\mu,\nu} = \frac{1}{d!} [C_{id}] \cdot C_{\mu} \frac{C^{(2)}_{(2)}}{m!} C_{\nu}$$

is a tau-function of the 2D Toda integrable hierarchy.

Corollary (Okounkov, '00)

The partition function of Hurwitz numbers is a tau-function of the KP integrable hierarchy.

- It extends to many other Hurwitz problems (different ramification conditions)
- It proves a recursion for Hurwitz numbers conjectured by Pandharipande
- The key part of the proof is to express (changing to Schur functions basis)

$$\mathbf{h}_{g;\mu,\nu}^{\bullet} = \frac{1}{\prod \mu_l \prod \nu_j} \cdot \left\langle \alpha_{\mu_1} \alpha_{\mu_2} \cdots \alpha_{\mu_{\ell}(\mu)} \frac{\mathcal{F}_2 \mathcal{F}_2 \cdots \mathcal{F}_2}{m!} \alpha_{-\nu_1} \alpha_{-\nu_2} \cdots \alpha_{-\nu_{\ell}(\nu)} \right\rangle$$

for the bosonic operators α_k , $[\alpha_k, \alpha_l] = k\delta_{k,l}$ acting on the Fock space and some zero energy operators \mathcal{F}_2 representing simple ramifications.

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	000000	000000000000000000000000000000000000000	00000	000

Mathematical physics side In terms of integrable hierarchies:

Theorem (Okounkov, '00)

The partition function of double Hurwitz numbers

$$\mathcal{Z}(p,\beta;\vec{p},\vec{p}') := \sum_{d,m;\mu,\nu\vdash d} h^{\bullet}_{g;\mu,\nu} q^d \beta^m p_{\mu}, p'_{\nu}, \qquad h^{\bullet}_{g;\mu,\nu} = \frac{1}{d!} [C_{id}].C_{\mu} \frac{C^m_{(2)}}{m!} C_{\nu}$$

is a tau-function of the 2D Toda integrable hierarchy.

Corollary (Okounkov, '00)

The partition function of Hurwitz numbers is a tau-function of the KP integrable hierarchy.

- It extends to many other Hurwitz problems (different ramification conditions)
- It proves a recursion for Hurwitz numbers conjectured by Pandharipande
- The key part of the proof is to express (changing to Schur functions basis)

$$h_{g;\mu,\nu}^{\bullet} = \frac{1}{\prod \mu_i \prod \nu_j} \cdot \left\langle \alpha_{\mu_1} \alpha_{\mu_2} \cdots \alpha_{\mu_{\ell}(\mu)} \frac{\mathcal{F}_2 \mathcal{F}_2 \cdots \mathcal{F}_2}{m!} \alpha_{-\nu_1} \alpha_{-\nu_2} \cdots \alpha_{-\nu_{\ell}(\nu)} \right\rangle$$

for the bosonic operators α_k , $[\alpha_k, \alpha_l] = k\delta_{k,l}$ acting on the Fock space and some zero energy operators \mathcal{F}_2 representing simple ramifications.

Physics/enumerative problem side

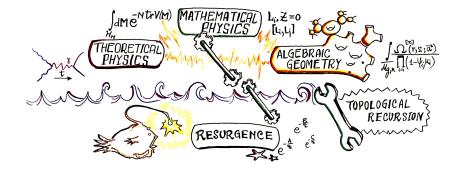
In terms of enumerative problems / topological string theory / matrix models:

- Gromov Witten / Hurwitz correspondence for nonsingular target curves (Okounkov-Pandharipande, '02)
- BKMP conjecture (Bouchard, Klemm, Mariño, Pasquetti, '07)
- Bouchard Mariño conjecture, '07 (mirrors of toric Calabi-Yau threefolds, framed vertex in the limit of infinite framing)

Matrix model for Hurwitz numbers (Borot, Eynard, Mulase, Safnuk, '09)

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

What about topological recursion for Hurwitz theory?



▲□▶▲□▶▲□▶▲□▶ □ のへで

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Topological recursion for Hurwitz numbers

Conjecture (Bouchard-Mariño, '07. Now theorem)

Hurwitz numbers belong to ENT via the spectral curve

$$\Sigma = \mathbb{CP}^1$$
, $x(z) = -z + \log(z)$, $y(z) = z$, $\omega_{0,2} = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$

producing free energies $F_{g,n}(x_1, \ldots, x_n) = \int^{x_1} \cdots \int^{x_n} \omega_{g,n} = \sum_{\mu_1, \ldots, \mu_n=1} h_{g;\mu}^{\circ} \prod_{i=1}^n e^{x_i \mu_i}$

Theorem (Eynard, '11; DOSS, '13)

$$\omega_{g,n}(\vec{x}) = \sum_{\substack{a_1,\ldots,a_n\\a_1,\ldots,a_n}} \int_{\overline{\mathcal{M}}_{g,n}} \mathcal{C}_{g,n}(v_{a_1} \otimes \cdots \otimes v_{a_n}) \prod_{i=1}^n \psi_i^{a_i} d\left(\left(-\frac{d}{dx_i} \right)^{a_i} \xi_{a_i}(x_i) \right)$$

- (Eynard, Mulase, Safnuk, '09): Proof using ELSV formula
- For Hurwitz numbers we have $\xi_0(x) = \sum_{\mu=0} \frac{\mu^{\mu}}{\mu!} e^{\mu x}$, which gives exactly the non-polynomial part of the ELSV formula
- The ELSV formula is implied to extract the non-polynomial structure, to show that the correlation differentials are well-defined on the spectral curve as they can be expressed as differential operators acting on the basis of the \$_{I^*}\$

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Topological recursion for Hurwitz numbers

Conjecture (Bouchard-Mariño, '07. Now theorem)

Hurwitz numbers belong to ENT via the spectral curve

$$\Sigma = \mathbb{CP}^1$$
, $x(z) = -z + \log(z)$, $y(z) = z$, $\omega_{0,2} = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$

producing free energies $F_{g,n}(x_1, \ldots, x_n) = \int^{x_1} \cdots \int^{x_n} \omega_{g,n} = \sum_{\mu_1, \ldots, \mu_n=1} h_{g;\mu}^{\circ} \prod_{i=1}^n e^{x_i \mu_i}$

Theorem (Eynard, '11; DOSS, '13)

$$\omega_{g,n}(\vec{x}) = \sum_{\substack{\sigma_1,\ldots,\sigma_n\\\sigma_1,\ldots,\sigma_n}} \int_{\overline{\mathcal{M}}g,n} \mathcal{C}_{g,n}(v_{\sigma_1} \otimes \cdots \otimes v_{\sigma_n}) \prod_{i=1}^n \psi_i^{d_i} d\left(\left(-\frac{d}{dx_i} \right)^{d_i} \xi_{\sigma_i}(x_i) \right)$$

- (Eynard, Mulase, Safnuk, '09): Proof using ELSV formula
- For Hurwitz numbers we have $\xi_0(x) = \sum_{\mu=0} \frac{\mu^{\mu}}{\mu!} e^{\mu x}$, which gives exactly the non-polynomial part of the ELSV formula

The ELSV formula is implied to extract the non-polynomial structure, to show that the correlation differentials are well-defined on the spectral curve as they can be expressed as differential operators acting on the basis of the \u03c6₁.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 <l>・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Topological recursion for Hurwitz numbers

Conjecture (Bouchard-Mariño, '07. Now theorem)

Hurwitz numbers belong to ENT via the spectral curve

$$\Sigma = \mathbb{CP}^1$$
, $x(z) = -z + \log(z)$, $y(z) = z$, $\omega_{0,2} = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$

producing free energies $F_{g,n}(x_1, \ldots, x_n) = \int^{x_1} \cdots \int^{x_n} \omega_{g,n} = \sum_{\mu_1, \ldots, \mu_n=1} h_{g;\mu}^{\circ} \prod_{i=1}^n e^{x_i \mu_i}$

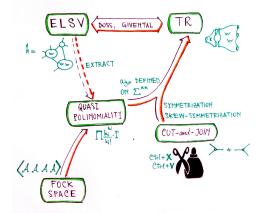
Theorem (Eynard, '11; DOSS, '13)

$$\omega_{g,n}(\vec{x}) = \sum_{\substack{a_1,\ldots,a_n \\ a_1,\ldots,a_n}} \int_{\overline{\mathcal{M}}_{g,n}} \mathcal{C}_{g,n}(v_{a_1} \otimes \cdots \otimes v_{a_n}) \prod_{i=1}^n \psi_i^{a_i} d\left(\left(-\frac{d}{dx_i} \right)^{a_i} \xi_{a_i}(x_i) \right)$$

- (Eynard, Mulase, Safnuk, '09): Proof using ELSV formula
- For Hurwitz numbers we have $\xi_0(x) = \sum_{\mu=0} \frac{\mu^{\mu}}{\mu!} e^{\mu x}$, which gives exactly the non-polynomial part of the ELSV formula
- The ELSV formula is implied to extract the non-polynomial structure, to show that the correlation differentials are well-defined on the spectral curve as they can be expressed as differential operators acting on the basis of the ξ_i.

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	000000	000000000000000000000000000000000000000	00000	000

TR for algebraic geometry: proving ELSV formulae by extracting the non-polynomial part independently



Example: new proof of Johnson-Pandharipande-Tseng ELSV formula for orbifold Hurwitz numbers.

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

- Let g, n be non-negative integers such that 2g 2 + n > 0.
- Let $r \in \mathbb{Z}_{>0}$ and $s \in \mathbb{Z}$.
- Let $\{a_1, \ldots, a_n\} \in [0, r-1]^n$ an integer vector such that: $\sum_i a_i \equiv s(2g-2+n) \pmod{r}$
- Let $\overline{\mathcal{M}}_{g,n,a}^{r,\tilde{s}}$ be the proper moduli stack of stable curves $[C, p_1, \ldots, p_n]$ in $\overline{\mathcal{M}}_{g,n}$ together with a line bundle *L* such that $L^{\otimes r} \simeq \omega_{low}^{\otimes s}(-\sum_{l} a_l p_l)$
- Let $\pi : \overline{C}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n,\sigma}^{r,s}$ be the universal curve, let $\mathcal{L} \to \overline{C}_{g,n,\sigma}^{r,s}$ be the *r*-th universal root, let $\epsilon : \overline{\mathcal{M}}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n}$ be the natural forgetful map. Let $ch_m(r,s;\vec{a})$ be the Chern character $ch_m(R^*\pi_*\mathcal{L})$

Theorem (Chiodo formula)

$$(m+1)! \operatorname{ch}_{m}(r,s;\vec{\alpha}) = B_{m+1}\left(\frac{s}{r}\right) \kappa_{m} - \sum_{l=1}^{n} B_{m+1}\left(\frac{a_{l}}{r}\right) \psi_{l}^{m} + \frac{r}{2} \sum_{\alpha=0}^{r-1} B_{m+1}\left(\frac{\alpha}{r}\right) J_{\alpha,*} \frac{(\psi')^{m} - (-\psi'')^{m}}{\psi' + \psi''}$$

where j_a is the boundary morphism representing the boundary divisor with multiplicity a at one of the branches of the node, ψ' , ψ'' are the ψ classes at the branches of the node, $B_m(x)$ are Bernoulli polynomials.

$$\Omega^{[\mathbf{X}]}(r,s;\vec{a}) := \epsilon_* \exp\left(\sum_{m=1} (-x)^m (m-1)! \operatorname{ch}_m(r,s;\vec{a})\right) \in H^{\operatorname{even}}(\overline{\mathcal{M}}_{g,n})$$

- Let g, n be non-negative integers such that 2g 2 + n > 0.
- Let $r \in \mathbb{Z}_{>0}$ and $s \in \mathbb{Z}$.
- Let $\{a_1, \ldots, a_n\} \in [0, r-1]^n$ an integer vector such that: $\sum_i a_i \equiv s(2g-2+n) \pmod{r}$
- Let $\overline{\mathcal{M}}_{a,n,a}^{r,s}$ be the proper moduli stack of stable curves $[C, p_1, \ldots, p_n]$ in $\overline{\mathcal{M}}_{g,n}$ together with a
- Let $\pi: \overline{\mathcal{C}}_{\alpha,n,q}^{r,s} \to \overline{\mathcal{M}}_{\alpha,n,q}^{r,s}$ be the universal curve, let $\mathcal{L} \to \overline{\mathcal{C}}_{\alpha,n,q}^{r,s}$ be the *r*-th universal root, let

$$(m+1)! \operatorname{ch}_{m}(r,s;\vec{\alpha}) = B_{m+1}\left(\frac{s}{r}\right) \kappa_{m} - \sum_{l=1}^{n} B_{m+1}\left(\frac{a_{l}}{r}\right) \psi_{l}^{m} + \frac{r}{2} \sum_{\alpha=0}^{r-1} B_{m+1}\left(\frac{\alpha}{r}\right) J_{\alpha,*} \frac{(\psi')^{m} - (-\psi'')^{m}}{\psi' + \psi''}$$

$$\Omega^{[X]}(r,s;\vec{a}) := \epsilon_* \exp\left(\sum_{m=1} (-x)^m (m-1)! \operatorname{ch}_m(r,s;\vec{a})\right) \in H^{\operatorname{even}}(\overline{\mathcal{M}}_{g,n})$$

SQA

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	•00000000000000000000000000000000000000	00000	000

- Let g, n be non-negative integers such that 2g 2 + n > 0.
- Let $r \in \mathbb{Z}_{>0}$ and $s \in \mathbb{Z}$.
- Let $\{a_1, \ldots, a_n\} \in [0, r-1]^n$ an integer vector such that: $\sum_i a_i \equiv s(2g-2+n) \pmod{r}$
- Let $\overline{\mathcal{M}}_{(s,n,a)}^{r,s}$ be the proper moduli stack of stable curves $[C, p_1, \ldots, p_n]$ in $\overline{\mathcal{M}}_{g,n}$ together with a line bundle *L* such that $L^{\otimes r} \cong \omega_{loo}^{\otimes s}(-\sum_{l} a_l p_l)$
- Let $\pi : \overline{C}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n,\sigma}^{r,s}$ be the universal curve, let $\mathcal{L} \to \overline{C}_{g,n,\sigma}^{r,s}$ be the *r*-th universal root, let $\epsilon : \overline{\mathcal{M}}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n}$ be the natural forgetful map. Let $ch_m(r,s;\vec{a})$ be the Chern character $ch_m(\mathcal{R}^\bullet\pi_*\mathcal{L})$

Theorem (Chiodo formula)

$$(m+1)! \operatorname{ch}_{m}(r,s;\vec{\alpha}) = B_{m+1}\left(\frac{s}{r}\right) \kappa_{m} - \sum_{l=1}^{n} B_{m+1}\left(\frac{a_{l}}{r}\right) \psi_{l}^{m} + \frac{r}{2} \sum_{\alpha=0}^{r-1} B_{m+1}\left(\frac{\alpha}{r}\right) J_{\alpha,*} \frac{(\psi')^{m} - (-\psi'')^{m}}{\psi' + \psi''}$$

where j_a is the boundary morphism representing the boundary divisor with multiplicity a at one of the branches of the node, ψ' , ψ'' are the ψ classes at the branches of the node, $B_m(x)$ are Bernoulli polynomials.

$$\Omega^{[X]}(r,s;\vec{a}) := \epsilon_* \exp\left(\sum_{m=1} (-x)^m (m-1)! \operatorname{ch}_m(r,s;\vec{a})\right) \in H^{\operatorname{even}}(\overline{\mathcal{M}}_{g,n})$$

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	•00000000000000000000000000000000000000	00000	000

- Let g, n be non-negative integers such that 2g 2 + n > 0.
- Let $r \in \mathbb{Z}_{>0}$ and $s \in \mathbb{Z}$.
- Let $\{a_1, \ldots, a_n\} \in [0, r-1]^n$ an integer vector such that: $\sum_i a_i \equiv s(2g-2+n) \pmod{r}$
- Let $\overline{\mathcal{M}}_{g,n,a}^{r,s}$ be the proper moduli stack of stable curves $[C, p_1, \ldots, p_n]$ in $\overline{\mathcal{M}}_{g,n}$ together with a line bundle *L* such that $L^{\otimes r} \simeq \omega_{loo}^{\otimes s}(-\sum_i a_i p_i)$
- Let $\pi : \overline{C}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n,\sigma}^{r,s}$ be the universal curve, let $\mathcal{L} \to \overline{C}_{g,n,\sigma}^{r,s}$ be the *r*-th universal root, let $\epsilon : \overline{\mathcal{M}}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n}$ be the natural forgetful map. Let $ch_m(r,s;\vec{a})$ be the Chern character $ch_m(\mathcal{R}^\bullet\pi_*\mathcal{L})$

Theorem (Chiodo formula)

$$(m+1)! \operatorname{ch}_{m}(r,s;\vec{a}) = B_{m+1}\left(\frac{s}{r}\right) \kappa_{m} - \sum_{l=1}^{n} B_{m+1}\left(\frac{a_{l}}{r}\right) \psi_{l}^{m} + \frac{r}{2} \sum_{\alpha=0}^{r-1} B_{m+1}\left(\frac{\alpha}{r}\right) J_{\alpha,*} \frac{(\psi')^{m} - (-\psi'')^{m}}{\psi' + \psi''}$$

where j_a is the boundary morphism representing the boundary divisor with multiplicity a at one of the branches of the node, ψ' , ψ'' are the ψ classes at the branches of the node, $B_m(x)$ are Bernoulli polynomials.

$$\Omega^{[X]}(r,s;\vec{a}) := \epsilon_* \exp\left(\sum_{m=1} (-x)^m (m-1)! \operatorname{ch}_m(r,s;\vec{a})\right) \in H^{\operatorname{even}}(\overline{\mathcal{M}}_{g,n})$$

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	•00000000000000000000000000000000000000	00000	000

- Let g, n be non-negative integers such that 2g 2 + n > 0.
- Let $r \in \mathbb{Z}_{>0}$ and $s \in \mathbb{Z}$.
- Let $\{a_1, \ldots, a_n\} \in [0, r-1]^n$ an integer vector such that: $\sum_i a_i \equiv s(2g-2+n) \pmod{r}$

• Let $\overline{\mathcal{M}}_{g,n,a}^{r,s}$ be the proper moduli stack of stable curves $[C, p_1, \ldots, p_n]$ in $\overline{\mathcal{M}}_{g,n}$ together with a line bundle *L* such that $L^{\otimes r} \simeq \omega_{loo}^{\otimes s}(-\sum_i a_i p_i)$

• Let $\pi : \overline{C}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n,\sigma}^{r,s}$ be the universal curve, let $\mathcal{L} \to \overline{C}_{g,n,\sigma}^{r,s}$ be the *r*-th universal root, let $\epsilon : \overline{\mathcal{M}}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n}$ be the natural forgetful map. Let $\operatorname{ch}_m(r,s;\vec{a})$ be the Chern character $\operatorname{ch}_m(R^{\bullet}\pi_*\mathcal{L})$

Theorem (Chiodo formula)

$$(m+1)! \operatorname{ch}_{m}(r,s;\vec{\alpha}) = B_{m+1}\left(\frac{s}{r}\right) \kappa_{m} - \sum_{l=1}^{n} B_{m+1}\left(\frac{a_{l}}{r}\right) \psi_{l}^{m} + \frac{r}{2} \sum_{\alpha=0}^{r-1} B_{m+1}\left(\frac{\alpha}{r}\right) j_{\alpha,*} \frac{(\psi')^{m} - (-\psi'')^{m}}{\psi' + \psi''}$$

where J_{α} is the boundary morphism representing the boundary divisor with multiplicitly α at one of the branches of the node, ψ' , ψ'' are the ψ classes at the branches of the node, $B_m(x)$ are Bernoulli polynomials.

$$\Omega^{[X]}(r,s;\vec{a}) := \epsilon_* \exp\left(\sum_{m=1} (-x)^m (m-1)! \operatorname{ch}_m(r,s;\vec{a})\right) \in H^{\operatorname{even}}(\overline{\mathcal{M}}_{g,n})$$

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	•00000000000000000000000000000000000000	00000	000

- Let g, n be non-negative integers such that 2g 2 + n > 0.
- Let $r \in \mathbb{Z}_{>0}$ and $s \in \mathbb{Z}$.
- Let $\{a_1, \ldots, a_n\} \in [0, r-1]^n$ an integer vector such that: $\sum_i a_i \equiv s(2g-2+n) \pmod{r}$

• Let $\overline{\mathcal{M}}_{g,n,a}^{r,s}$ be the proper moduli stack of stable curves $[C, p_1, \ldots, p_n]$ in $\overline{\mathcal{M}}_{g,n}$ together with a line bundle *L* such that $L^{\otimes r} \simeq \omega_{loo}^{\otimes s}(-\sum_i a_i p_i)$

• Let $\pi : \overline{C}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n,\sigma}^{r,s}$ be the universal curve, let $\mathcal{L} \to \overline{C}_{g,n,\sigma}^{r,s}$ be the *r*-th universal root, let $\epsilon : \overline{\mathcal{M}}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n}$ be the natural forgetful map. Let $\operatorname{ch}_m(r,s;\vec{a})$ be the Chern character $\operatorname{ch}_m(R^{\bullet}\pi_*\mathcal{L})$

Theorem (Chiodo formula)

$$(m+1)! \operatorname{ch}_{m}(r, s; \vec{a}) = B_{m+1}\left(\frac{s}{r}\right) \kappa_{m} - \sum_{i=1}^{n} B_{m+1}\left(\frac{a_{i}}{r}\right) \psi_{i}^{m} + \frac{r}{2} \sum_{a=0}^{r-1} B_{m+1}\left(\frac{a}{r}\right) j_{a,*} \frac{(\psi')^{m} - (-\psi'')^{m}}{\psi' + \psi''}$$

where j_a is the boundary morphism representing the boundary divisor with multiplicity a at one of the branches of the node, ψ', ψ'' are the ψ classes at the branches of the node, $B_m(x)$ are Bernoulli polynomials.

Definition (Chiodo classes)

$$\Omega^{[x]}(r,s;\vec{a}) := \epsilon_* \exp\left(\sum_{m=1}^{\infty} (-x)^m (m-1)! \operatorname{ch}_m(r,s;\vec{a})\right) \in H^{\operatorname{even}}(\overline{\mathcal{M}}_{g,n})$$

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	•00000000000000000000000000000000000000	00000	000

- Let g, n be non-negative integers such that 2g 2 + n > 0.
- Let $r \in \mathbb{Z}_{>0}$ and $s \in \mathbb{Z}$.
- Let $\{a_1, \ldots, a_n\} \in [0, r-1]^n$ an integer vector such that: $\sum_i a_i \equiv s(2g-2+n) \pmod{r}$

• Let $\overline{\mathcal{M}}_{g,n,a}^{r,s}$ be the proper moduli stack of stable curves $[C, p_1, \ldots, p_n]$ in $\overline{\mathcal{M}}_{g,n}$ together with a line bundle *L* such that $L^{\otimes r} \simeq \omega_{loo}^{\otimes s}(-\sum_i a_i p_i)$

• Let $\pi : \overline{C}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n,\sigma}^{r,s}$ be the universal curve, let $\mathcal{L} \to \overline{C}_{g,n,\sigma}^{r,s}$ be the *r*-th universal root, let $\epsilon : \overline{\mathcal{M}}_{g,n,\sigma}^{r,s} \to \overline{\mathcal{M}}_{g,n}$ be the natural forgetful map. Let $\operatorname{ch}_m(r,s;\vec{a})$ be the Chern character $\operatorname{ch}_m(R^{\bullet}\pi_*\mathcal{L})$

Theorem (Chiodo formula)

$$(m+1)! \operatorname{ch}_{m}(r,s;\vec{\sigma}) = B_{m+1}\left(\frac{s}{r}\right) \kappa_{m} - \sum_{i=1}^{n} B_{m+1}\left(\frac{a_{i}}{r}\right) \psi_{i}^{m} + \frac{r}{2} \sum_{a=0}^{r-1} B_{m+1}\left(\frac{a}{r}\right) j_{a,*} \frac{(\psi')^{m} - (-\psi'')^{m}}{\psi' + \psi''}$$

where j_a is the boundary morphism representing the boundary divisor with multiplicity a at one of the branches of the node, ψ', ψ'' are the ψ classes at the branches of the node, $B_m(x)$ are Bernoulli polynomials.

Definition (Chiodo classes)

$$\Omega^{[X]}(r,s;\vec{a}) := \epsilon_* \exp\left(\sum_{m=1} (-x)^m (m-1)! \operatorname{ch}_m(r,s;\vec{a})\right) \in H^{\operatorname{even}}(\overline{\mathcal{M}}_{g,n})$$

590

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Theorem (Ekedahl, Lando, Shapiro, Vainshtein ('99))

Let g, n be non-negative integers such that 2g - 2 + n > 0. For a partition μ of length n and size d we have :

$$h_{g;\mu}^{\circ} = \prod_{i=1}^{n} \frac{\mu_{i}^{\mu_{i}}}{\mu_{i}!} \int_{\overline{\mathcal{M}}_{g,n}} \frac{\Omega^{[1]}(r=1,s=1;\vec{1})}{\prod_{i=1}^{n}(1-\mu_{i}\psi_{i})}$$

・ロト・日本・日本・日本・日本・日本

where:

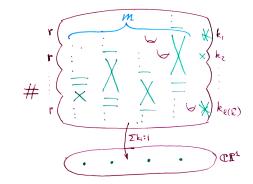
•
$$h_{g;\mu}^{\circ} = \frac{1}{d!} [C_{id}]^{\circ} \cdot C_{\mu} \frac{(C_{(2)})^{m}}{m!} C_{(1,1,\ldots,1)}$$

• By Riemann Hurwitz
$$m = (2g - 2 + n + d)$$

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

ELSV ORBIFOLD $\Omega_{g,n}^{[x]}(r,s;\overline{a})$

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000



◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Proposition (L,Popolitov, Shadrin, Zvonkine, 15)

Johnson-Pandharipande-Tseng ELSV formula can be restated in terms of Chiodo class (slightly specialised) as follows.

Let g, n be non-negative integers such that 2g - 2 + n > 0. Let q be a positive integer. For a partition μ of length n and size d divisible by q, we have :

$$h_{g;\mu}^{\circ,\mathbf{q}} = c_{g,n}^{\mathbf{q}} \cdot \prod_{i=1}^{n} \frac{\left(\frac{\mu_{i}}{q}\right)^{[\mu_{i}]}}{[\mu_{i}]!} \int_{\overline{\mathcal{M}}g,n} \frac{\Omega_{g,n}^{[1]}(\mathbf{q},\mathbf{q};\mathbf{q}-\langle\mu_{i}\rangle)}{\prod_{i=1}^{n}(1-\frac{\mu_{i}}{q}\psi_{i})}$$

where:

•
$$h_{g;\mu}^{\circ,q} = [C_{id}]^{\circ} \cdot C_{\mu} \frac{(C_{(2)})^m}{m!} C_{(q,q,\ldots,q)}$$

• $\mu_i = q[\mu_i] + \langle \mu_i \rangle$, and by Riemann Hurwitz $m = (2g - 2 + \ell(\mu) + |\mu|/q)$

• $c_{a,n}^q$ is the product of powers of q depending on g, n, μ .

Theorem (L.,Popolitov, Shadrin, Zvonkine, ^15)

The spectral curve $\Sigma = \mathbb{CP}^1$, $x = -z^r + \log(z)$, $y = z^s$, $\omega_{0,2} = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ produces free energies

$$F_{g,n}^{r,s}(x_1,\ldots,x_n) = c_{g,n}^{r,s} \prod_{i=1}^n \frac{(\mu_i/r)^{[\mu_i]}}{[\mu_i]!} e^{x_i \mu_i} \int_{\overline{\mathcal{M}}_{g,n}} \frac{\Omega_{g,n}^{[1]}(r,s,r-\langle \mu_i \rangle)}{\prod_{i=1}^n (1-\frac{\mu_i}{r}\psi_i)}, \qquad \mu = [\mu]r + \langle \mu \rangle$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Proof: DOSS equivalence (Givental/Teleman classification and TR).

Proposition (L,Popolitov, Shadrin, Zvonkine, '15)

Johnson-Pandharipande-Tseng ELSV formula can be restated in terms of Chiodo class (slightly specialised) as follows.

Let g, n be non-negative integers such that 2g - 2 + n > 0. Let q be a positive integer. For a partition μ of length n and size d divisible by q, we have :

$$h_{g;\mu}^{\circ,\mathbf{q}} = c_{g,n}^{\mathbf{q}} \cdot \prod_{i=1}^{n} \frac{\left(\frac{\mu_{i}}{q}\right)^{[\mu_{i}]}}{[\mu_{i}]!} \int_{\overline{\mathcal{M}}g,n} \frac{\Omega_{g,n}^{[1]}(\mathbf{q},\mathbf{q};\mathbf{q}-\langle\mu_{i}\rangle)}{\prod_{i=1}^{n}(1-\frac{\mu_{i}}{q}\psi_{i})}$$

where:

•
$$h_{g,\mu}^{\circ,q} = [C_{ld}]^{\circ} \cdot C_{\mu} \frac{(C_{(2)})^m}{m!} C_{(q,q,\ldots,q)}$$

• $\mu_i = q[\mu_i] + \langle \mu_i \rangle$, and by Riemann Hurwitz $m = (2g - 2 + \ell(\mu) + |\mu|/q)$
• $c_{q,n}^q$ is the product of powers of q depending on g, n, μ .

Theorem (L., Popolitov, Shadrin, Zvonkine, 15)

The spectral curve $\Sigma = \mathbb{CP}^1$, $x = -z^r + log(z)$, $y = z^s$, $\omega_{0,2} = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ produces free energies

$$F_{g,n}^{r,s}(x_1,\ldots,x_n) = c_{g,n}^{r,s} \prod_{i=1}^n \frac{(\mu_i/r)^{[\mu_i]}}{[\mu_i]!} e^{x_i \mu_i} \int_{\overline{\mathcal{M}}_{g,n}} \frac{\Omega_{g,n}^{[1]}(r,s;r-\langle \mu_i \rangle)}{\prod_{i=1}^n (1-\frac{\mu_i}{r}\psi_i)}, \qquad \mu = [\mu]r + \langle \mu \rangle$$

Proof: DOSS equivalence (Givental/Teleman classification and TR).

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ → 豆 → のへで

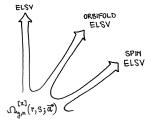
troduction	Hurwitz theory	C
C	0000000	0

Int

Chiodo classes Ω

Integrability for Ω

Resurgence



Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000		000



Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Conjecture (Zvonkine (unpublished, '06). Now theorem.)

Let g, n be non-negative integers such that 2g - 2 + n > 0. Let r be a positive integer. For a partition μ of length n and size d, we have :

$$h_{g;\mu}^{\circ,r-spin} = c_{g,n}^{r} \cdot \prod_{i=1}^{n} \frac{\left(\frac{\mu_{i}}{r}\right)^{[\mu_{i}]}}{[\mu_{i}]!} \int_{\overline{\mathcal{M}}g,n} \frac{\Omega_{g,n}^{[l]}(r,1;r-\langle \mu_{i}\rangle)}{\prod_{i=1}^{n}(1-\frac{\mu_{i}}{r}\psi_{i})}$$

where:

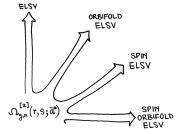
$$\begin{split} h_{g;\mu}^{\circ,r-spin} &= [C_{id}]^{\circ}.C_{\mu} \frac{(\overline{C}_{r+1})^{b}}{b!} C_{(1,1,\ldots,1)} \\ \mu_{i} &= r[\mu_{i}] + \langle \mu_{i} \rangle, \text{ and by Riemann Hurwitz } b = (2g-2+n+d)/r \\ c_{g,n}^{\prime} \text{ is the product of powers of } r \text{ depending on } g, n, \mu. \\ \overline{C}_{r+1} \text{ is the } (r+1)\text{-st completed cycle of the GW/Hurwitz correspondence. For instance:} \\ \overline{C}_{(2)} &= C_{(2)}, \qquad \overline{C}_{(3)} = C_{(3)} + C_{(1,1)} + \frac{1}{12}C_{(1)} + \frac{7}{2830}C_{()}, \qquad \overline{C}_{(4)} = C_{(4)} + \text{l.o.t} \\ \hline \text{GW/Hurwitz correspondence for non-singular curve } X: \text{ descendents of the class of a point } \omega \text{ are equivalent to completed cycles} \\ \tau_{k}(\omega) &= \frac{\overline{C}_{(k+1)}}{k!}. \end{split}$$

Proof:

Proof via topological recursion and DOSS equivalence ('19, see Generalised Zvonkine conjecture)

Proof via localisation on the moduli space of stable maps by Leigh ('20).

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000



Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Conjecture (Kramer, L., Popolitov, Shadrin (2017). Now theorem.)

Let g, n be non-negative integers such that 2g - 2 + n > 0. Let q, r be positive integers. For a partition μ of length n and size d divisible by q, we have :

$$h_{g;\mu}^{\circ,\boldsymbol{q},\boldsymbol{r}-spin} = c_{g,n}^{\boldsymbol{q},\boldsymbol{r}} \cdot \prod_{i=1}^{n} \frac{(\frac{\mu_{i}}{qr})^{[\mu_{i}]}}{[\mu_{i}]!} \int_{\overline{\mathcal{M}}_{g,n}} \frac{\Omega_{g,n}^{[1]}(\boldsymbol{r},\boldsymbol{q},\boldsymbol{q};\boldsymbol{q}r-\langle\mu_{i}\rangle)}{\prod_{i=1}^{n}(1-\frac{\mu_{i}}{qr}\psi_{i})}$$

where:

•
$$h_{g,\mu}^{\circ,q,r-spin} = [C_{ld}]^{\circ} \cdot C_{\mu} \frac{(\overline{C}_{r+1})^b}{b!} C_{(q,q,\ldots,q)}$$

• $\mu_i = qr[\mu_i] + \langle \mu_i \rangle$, and by Riemann Hurwitz $b = (2g - 2 + \ell(\mu) + |\mu|/q)/r$
• $C_{g,n}^{q,r}$ is the product of possibly fractional powers of r and q depending on g, n, μ .

The proof that uses topological recursion goes through a series of papers:

- DOSS equivalence for q = 1 (Shadrin, Spitz, Zvonkine, '13)
- DOSS equivalence for Chiodo classes (L., Popolitov, Shadrin, Zvonkine, '15)
- Quasi-polynomiality via Fock space for r = 1 (Dunin-Barkowski, L., Popolitov, Shadrin, '15)
- Quasi-polynomiality via Fock space and conjecture (Kramer, L., Popolitov, Shadrin, '17)
- Proved in genus zero, proved for r = 2 in any genera, via loop equation techniques (Borot, Kramer, L., Popolitov, Shadrin, '17)
- Proved in all cases extending loop equation techniques (Dunin-Barkowski, Kramer, Popolitov, Shadrin, '19)

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Conjecture (Kramer, L., Popolitov, Shadrin (2017). Now theorem.)

Let g, n be non-negative integers such that 2g - 2 + n > 0. Let q, r be positive integers. For a partition μ of length n and size d divisible by q, we have :

$$h_{g;\mu}^{\circ,q,r-spin} = c_{g,n}^{q,r} \cdot \prod_{i=1}^{n} \frac{(\frac{\mu_i}{qr})^{[\mu_i]}}{[\mu_i]!} \int_{\overline{\mathcal{M}}_{g,n}} \frac{\Omega_{g,n}^{[1]}(rq,q;qr-\langle\mu_i\rangle)}{\prod_{i=1}^{n}(1-\frac{\mu_i}{qr}\psi_i)}$$

where:

•
$$h_{g;\mu}^{\circ,q,r-spin} = [C_{id}]^{\circ} \cdot C_{\mu} \frac{(\overline{C}_{r+1})^b}{b!} C_{(q,q,\ldots,q)}$$

• $\mu_i = qr[\mu_i] + \langle \mu_i \rangle$, and by Riemann Hurwitz $b = (2g - 2 + \ell(\mu) + |\mu|/q)/r$
• $c_{g,n}^{q,r}$ is the product of possibly fractional powers of r and q depending on g, n

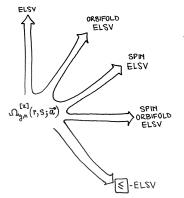
The proof that uses topological recursion goes through a series of papers:

- OCSS equivalence for q = 1 (Shadrin, Spitz, Zvonkine, '13)
- DOSS equivalence for Chiodo classes (L., Popolitov, Shadrin, Zvonkine, '15)
- Quasi-polynomiality via Fock space for r = 1 (Dunin-Barkowski, L., Popolitov, Shadrin, '15)
- Quasi-polynomiality via Fock space and conjecture (Kramer, L., Popolitov, Shadrin, '17)
- Proved in genus zero, proved for r = 2 in any genera, via loop equation techniques (Borot, Kramer, L., Popolitov, Shadrin, '17)

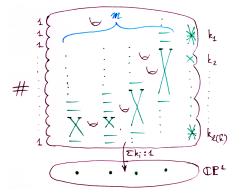
 $, \mu$.

 Proved in all cases extending loop equation techniques (Dunin-Barkowski, Kramer, Popolitov, Shadrin, '19)

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000



Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000	00000	000



Monotone Hurwitz numbers: labelling the cover sheets and the simple ramification points, the highest label is monotonically increasing.

▲□▶ ▲圖▶ ▲園▶ ▲園▶

Theorem (ELSV for monotone Hurwitz numbers. Alexandrov, L., Shadrin, '15)

Let g, n be non-negative integers such that 2g - 2 + n > 0. For a partition μ of length n and size d we have :

$$h_{g;\mu}^{\leq,\circ} = \prod_{i=1}^{n} \binom{2\mu_{i}}{\mu_{i}} \int_{\overline{\mathcal{M}}_{g,n}} \exp\left(\sum_{m=1} A_{m}\kappa_{m}\right) \prod_{i=1}^{n} \sum_{d_{i}=0} \frac{(2(\mu_{i}+d_{i})-1)!}{(2\mu_{i}-1)!!}$$

where:

•
$$h_{g;\mu}^{\leq,\circ} = [C_{id}]^{\circ} \cdot C_{\mu} h_m(J_2, \ldots, J_d) C_{(2,2,\ldots,2)}$$

• h_k is the complete homogeneous polynomial and $J_t := (1 \ t) + (2 \ t) + \dots + (t - 1 \ t) \in \mathbb{Q}[\mathfrak{S}_d]$ is the *t*-th Jucys-Murphy element.

By Riemann Hurwitz m = 2g - 2 + n + d.

$$\sum_{i=0}^{\infty} (2k+1)!! x^i = \exp(-\sum_{m=1}^{\infty} A_m x^m)$$

Remarks:

These numbers arise as coefficient of the HCIZ matrix model for Coulomb gas (Goulden, Guay-Paquet, Novak, '11)

These numbers belong to ENT via $\Sigma = \mathbb{CP}^1$, $x = (z - 1)/z^2$, y = -z, $\omega_{0,2} = \frac{dz_1 d_2}{(z_1 - z_2)^2}$ (Do, Dyer, Mathews, '14)

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Theorem (ELSV for monotone Hurwitz numbers. Alexandrov, L., Shadrin, '15)

Let g, n be non-negative integers such that 2g - 2 + n > 0. For a partition μ of length n and size d we have :

$$h_{g;\mu}^{\leq,\circ} = \prod_{i=1}^{n} \binom{2\mu_{i}}{\mu_{i}} \int_{\overline{\mathcal{M}}_{g,n}} \exp\left(\sum_{m=1} A_{m}\kappa_{m}\right) \prod_{i=1}^{n} \sum_{d_{i}=0} \frac{(2(\mu_{i}+d_{i})-1)!}{(2\mu_{i}-1)!!}$$

where:

•
$$h_{g;\mu}^{\leq,\circ} = [C_{id}]^{\circ} \cdot C_{\mu} h_m(J_2, \ldots, J_d) C_{(2,2,\ldots,2)}$$

• h_k is the complete homogeneous polynomial and $J_t := (1 \ t) + (2 \ t) + \dots + (t - 1 \ t) \in \mathbb{Q}[\mathfrak{S}_d]$ is the *t*-th Jucys-Murphy element.

$$\sum_{i=0}^{\infty} (2k+1)!! x^i = \exp(-\sum_{m=1}^{\infty} A_m x^m)$$

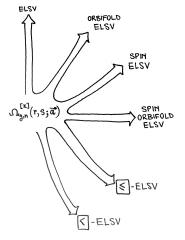
Remarks:

 These numbers arise as coefficient of the HCIZ matrix model for Coulomb gas (Goulden, Guay-Paquet, Novak, '11)

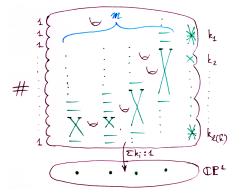
• These numbers belong to ENT via $\Sigma = \mathbb{CP}^1$, $x = (z - 1)/z^2$, y = -z, $\omega_{0,2} = \frac{dz_1 d_2}{(z_1 - z_2)^2}$ (Do, Dyer, Mathews, '14)

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000



Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000		000



Strictly monotone Hurwitz numbers or Grothendieck dessins d'enfant: labelling the cover sheets and the simple ramification points, the highest label is strictly monotonically increasing.

イロト イロト イヨト イヨト

ъ

Theorem (ELSV for Grothendieck dessins d'enfant. Borot, Garcia-Failde, '17)

Let g, n be non-negative integers such that 2g - 2 + n > 0. For a partition μ of length n and size d we have :

$$h_{g,2\mu}^{<,2,\circ} = 2^{g} \prod_{i=1}^{n} \binom{2\mu_{i}}{\mu_{i}} \mu_{i} \int_{\overline{\mathcal{M}}_{g,n}} \frac{\Omega^{[1]}(1,-1;\vec{1})\Omega^{[1/2]}(1,1;\vec{1})\Omega^{[1]}(1,1;\vec{1})}{\prod_{i=1}^{n}(1-\mu_{i}\psi_{i})} \sum_{h=0} \frac{[\Delta_{h}]}{2^{3h}(2h)!}$$

where:

$$h_{g;2\mu}^{<,2,\circ} = |\operatorname{Aut}(\mu)| [C_{id}]^{\circ} \cdot C_{(2\mu_1,\ldots,2\mu_n)} \left(\sum_{\alpha:|\alpha|=d,\ell(\alpha)=b} C_{\alpha} \right) C_{(2,2,\ldots,2)}$$

By Riemann Hurwitz b = d/2 - (2g - 2 + n)

• $[\Delta_h]$ is the Poincaré dual of the boundary strata $\overline{\mathcal{M}}_{g-h,n+2h} \subset \overline{\mathcal{M}}_{g,n}$ obtained by gluing the last 2*h* marked points pairwise.

These numbers belong to ENT via
$$\Sigma = \mathbb{CP}^1$$
, $x = z + 1/z$, $y = -z$, $\omega_{0,2} = \frac{dz_1d_2}{(z_1 - z_2)^2}$

They are strictly monotone Hurwitz numbers via Jucys-Murphy correspondence:

$$\sigma_k(J_2,\ldots,J_d) = \sum_{\alpha:|\alpha|=d,\ell(\alpha)=d-k} C_\alpha$$

where the Jucys-Murphy elements are $J_t := (1 \ t) + (2 \ t) + \cdots + (t - 1 \ t) \in \mathbb{Q}[\mathfrak{S}_d]$, and σ_k is the k-th elementary symmetric polynomial.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Theorem (ELSV for Grothendieck dessins d'enfant. Borot, Garcia-Failde, '17)

Let g, n be non-negative integers such that 2g - 2 + n > 0. For a partition μ of length n and size d we have :

$$h_{g;2\mu}^{<,2,\circ} = 2^{g} \prod_{i=1}^{n} \binom{2\mu_{i}}{\mu_{i}} \mu_{i} \int_{\overline{\mathcal{M}}g,n} \frac{\Omega^{[1]}(1,-1;\vec{i})\Omega^{[1/2]}(1,1;\vec{i})\Omega^{[1]}(1,1;\vec{i})}{\prod_{i=1}^{n}(1-\mu_{i}\psi_{i})} \sum_{h=0}^{n} \frac{[\Delta_{h}]}{2^{3h}(2h)!}$$

where:

$$h_{g;2\mu}^{<,2,\circ} = |\operatorname{Aut}(\mu)|[C_{id}]^{\circ}.C_{(2\mu_1,\ldots,2\mu_n)}\left(\sum_{\alpha:|\alpha|=d,\ell(\alpha)=b} C_{\alpha}\right)C_{(2,2,\ldots,2)}$$

By Riemann Hurwitz b = d/2 - (2g - 2 + n)

• $[\Delta_h]$ is the Poincaré dual of the boundary strata $\overline{\mathcal{M}}_{g-h,n+2h} \subset \overline{\mathcal{M}}_{g,n}$ obtained by gluing the last 2*h* marked points pairwise.

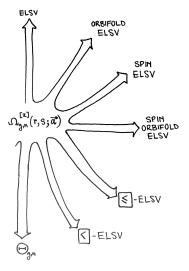
These numbers belong to ENT via $\Sigma = \mathbb{CP}^1$, x = z + 1/z, y = -z, $\omega_{0,2} = \frac{dz_1 d_2}{(z_1 - z_2)^2}$

They are strictly monotone Hurwitz numbers via Jucys-Murphy correspondence:

$$\sigma_k(J_2,\ldots,J_d) = \sum_{\alpha: |\alpha| = d, \ell(\alpha) = d-k} C_{\alpha}$$

where the Jucys-Murphy elements are $J_t := (1 \ t) + (2 \ t) + \dots + (t - 1 \ t) \in \mathbb{Q}[\mathfrak{S}_d]$, and σ_k is the k-th elementary symmetric polynomial.

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000



- i). The following properties identify uniquely the intersection numbers of $\{\Theta_{g,n}\}_{2a-2+n>0}$:
 - $\Theta_{g,n} \in H^*(\overline{\mathcal{M}}_{g,n})$ is of pure degree.
 - $\phi_{\text{irr}}^* \Theta_{g,n} = \Theta_{g-1,n+2}$ and $\phi_{h,l}^* \Theta_{g,n} = \pi_1^* \Theta_{h,|l|+1} \cdot \pi_2^* \Theta_{g-h,n-|l|+1}$ (attaching maps)

•
$$\pi^* \Theta_{g,n} = \psi_{n+1} \cdot \Theta_{g,n+1}$$
. (forgetful map)

• $\Theta_{1,1} = 3\psi_1$ (initial data)

Moreover, any such collection is of pure degree 2g - 2 + n, is invariant under the \mathfrak{S}_n action permutating the labels and vanishes in genus zero for any n.

ii). Such classes can be constructed as follows:

$$\Theta_{g,n} := 2^{g-1+n} \cdot [\deg = 2g - 2 + n] \cdot \left(\Omega_{g,n}^{[-1]}(2,-1;\vec{1})\right).$$

Moreover, $[\deg > 2g - 2 + n]$. $\Theta_{g,n} = 0$ (top Chern of an actual bundle).

- III). The partition function of its intersection theory $Z^{\Theta}(\hbar,\vec{t}) = \exp\left(\sum_{g,n,\vec{d}} \frac{\hbar^{Q-1}}{1} \left\langle \Theta_{g,n} \prod \psi_{i}^{d} \prod t_{d_{i}} \right\rangle \right) \text{ is a tau function of the KdV hierarchy.}$
- Θ_{g,n} is the CohFT corresponding to the Brézin-Gross-Witten matrix model (key of the proof above)
- (Do, Norbury (2016)) ENT via the irregular Bessel spectral curve: $x(z) = z^2/2$, y(z) = 1/z, Virasoro, cut and join, quantum curve.
- (Witten, Stanford (2019)) Og,n is involved in JT Gravity and Mirzakhani's recursion for volumes of moduli spaces of super Riemann surfaces.
- (Norbury (2020)) The volumes of the moduli space of super hyperbolic surfaces with geodesic boundary lengths L_i , $(\Theta_{g,n} \exp(2\pi^2 \kappa_1 + \frac{1}{2} \sum L_i \psi_i))$, belong to ENT via $x = z^2/2$, $y = \cos(2\pi z)/z$.

Sac

- i). The following properties identify uniquely the intersection numbers of $\{\Theta_{g,n}\}_{2g-2+n>0}$:
 - $\Theta_{g,n} \in H^*(\overline{\mathcal{M}}_{g,n})$ is of pure degree.
 - $\phi_{irr}^* \Theta_{g,n} = \Theta_{g-1,n+2}$ and $\phi_{h,l}^* \Theta_{g,n} = \pi_1^* \Theta_{h,|l|+1} \cdot \pi_2^* \Theta_{g-h,n-|l|+1}$ (attaching maps)

•
$$\pi^* \Theta_{g,n} = \psi_{n+1} \cdot \Theta_{g,n+1}$$
. (forgetful map)

•
$$\Theta_{1,1} = 3\psi_1$$
 (initial data)

Moreover, any such collection is of pure degree 2g - 2 + n, is invariant under the \mathfrak{S}_n action permutating the labels and vanishes in genus zero for any n.

ii). Such classes can be constructed as follows:

$$\Theta_{g,n} := 2^{g-1+n} \cdot [\deg = 2g - 2 + n] \cdot \left(\Omega_{g,n}^{[-1]}(2, -1; \vec{1}) \right).$$

Moreover, $[\deg > 2g - 2 + n]$. $\Theta_{g,n} = 0$ (top Chern of an actual bundle).

III). The partition function of its intersection theory $Z^{\Theta}(\hbar,\vec{t}) = \exp\left(\sum_{g,n,\vec{d}} \frac{\hbar^{g-1}}{n!} \left\langle \Theta_{g,n} \prod \psi_{i}^{d_{j}} \prod t_{d_{i}} \right\rangle \right) \text{ is a tau function of the KdV hierarchy.}$

- \bigcirc $\Theta_{q,n}$ is the CohFT corresponding to the Brézin-Gross-Witten matrix model (key of the proof above)
- (Do, Norbury (2016)) ENT via the irregular Bessel spectral curve: $x(z) = z^2/2$, y(z) = 1/z, Virasoro, cut and join, quantum curve.
- (Witten, Stanford (2019)) Og,n is involved in JT Gravity and Mirzakhani's recursion for volumes of moduli spaces of super Riemann surfaces.
- (Norbury (2020)) The volumes of the moduli space of super hyperbolic surfaces with geodesic boundary lengths L_i , $\langle \Theta_{g,n} \exp(2\pi^2 \kappa_1 + \frac{1}{2} \sum L_i \psi_i) \rangle$, belong to ENT via $x = z^2/2$, $y = \cos(2\pi z)/z$.

- i). The following properties identify uniquely the intersection numbers of $\{\Theta_{g,n}\}_{2g-2+n>0}$:
 - $\Theta_{g,n} \in H^*(\overline{\mathcal{M}}_{g,n})$ is of pure degree.
 - $\phi_{irr}^* \Theta_{g,n} = \Theta_{g-1,n+2}$ and $\phi_{h,l}^* \Theta_{g,n} = \pi_1^* \Theta_{h,|l|+1} \cdot \pi_2^* \Theta_{g-h,n-|l|+1}$ (attaching maps)

•
$$\pi^* \Theta_{g,n} = \psi_{n+1} \cdot \Theta_{g,n+1}$$
. (forgetful map)

• $\Theta_{1,1} = 3\psi_1$ (initial data)

Moreover, any such collection is of pure degree 2g - 2 + n, is invariant under the \mathfrak{S}_n action permutating the labels and vanishes in genus zero for any n.

ii). Such classes can be constructed as follows:

$$\Theta_{g,n} := 2^{g-1+n} \cdot [\deg = 2g - 2 + n] \cdot \left(\Omega_{g,n}^{[-1]}(2,-1;\vec{1}) \right).$$

Moreover, $[\deg > 2g - 2 + n]$. $\Theta_{g,n} = 0$ (top Chern of an actual bundle).

- iii). The partition function of its intersection theory $Z^{\Theta}(\hbar, \vec{t}) = \exp\left(\sum_{g,n,\vec{d}} \frac{\hbar g^{-1}}{n!} \left\langle \Theta_{g,n} \prod \psi_i^{d_i} \prod t_{d_i} \right\rangle \right)$ is a tau function of the **KdV hierarchy**.
- \bigcirc $\Theta_{q,n}$ is the CohFT corresponding to the Brézin-Gross-Witten matrix model (key of the proof above)
- (Do, Norbury (2016)) ENT via the irregular Bessel spectral curve: $x(z) = z^2/2$, y(z) = 1/z, Virasoro, cut and join, quantum curve.
- (Witten, Stanford (2019)) Og,n is involved in JT Gravity and Mirzakhani's recursion for volumes of moduli spaces of super Riemann surfaces.
- (Norbury (2020)) The volumes of the moduli space of super hyperbolic surfaces with geodesic boundary lengths L_i , $\langle \Theta_{g,n} \exp(2\pi^2 \kappa_1 + \frac{1}{2} \sum L_i \psi_i) \rangle$, belong to ENT via $x = z^2/2$, $y = \cos(2\pi z)/z$.

- i). The following properties identify uniquely the intersection numbers of $\{\Theta_{g,n}\}_{2g-2+n>0}$:
 - $\Theta_{g,n} \in H^*(\overline{\mathcal{M}}_{g,n})$ is of pure degree.
 - $\phi_{irr}^* \Theta_{g,n} = \Theta_{g-1,n+2}$ and $\phi_{h,l}^* \Theta_{g,n} = \pi_1^* \Theta_{h,|l|+1} \cdot \pi_2^* \Theta_{g-h,n-|l|+1}$ (attaching maps)

•
$$\pi^* \Theta_{g,n} = \psi_{n+1} \cdot \Theta_{g,n+1}$$
. (forgetful map)

•
$$\Theta_{1,1} = 3\psi_1$$
 (initial data)

Moreover, any such collection is of pure degree 2g - 2 + n, is invariant under the \mathfrak{S}_n action permutating the labels and vanishes in genus zero for any n.

ii). Such classes can be constructed as follows:

$$\Theta_{g,n} := 2^{g-1+n} \cdot [\deg = 2g - 2 + n] \cdot \left(\Omega_{g,n}^{[-1]}(2, -1; \vec{1}) \right).$$

Moreover, $[\deg > 2g - 2 + n]$. $\Theta_{g,n} = 0$ (top Chern of an actual bundle).

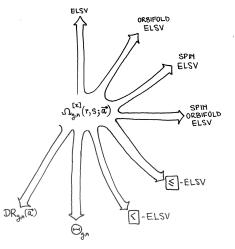
- iii). The partition function of its intersection theory $Z^{\Theta}(\hbar,\vec{t}) = \exp\left(\sum_{g,n,\vec{d}} \frac{\hbar^{g-1}}{1} \left\langle \Theta_{g,n} \prod \psi_i^{d_j} \prod t_{d_j} \right\rangle\right) \text{ is a tau function of the KdV hierarchy.}$
- $\Theta_{g,n}$ is the CohFT corresponding to the Brézin-Gross-Witten matrix model (key of the proof above)

• (Do, Norbury (2016)) ENT via the irregular Bessel spectral curve: $x(z) = z^2/2$, y(z) = 1/z, Virasoro, cut and join, quantum curve.

 (Witten, Stanford (2019)) Og, n is involved in JT Gravity and Mirzakhani's recursion for volumes of moduli spaces of super Riemann surfaces.

• (Norbury (2020)) The volumes of the moduli space of super hyperbolic surfaces with geodesic boundary lengths L_i , $\langle \Theta_{g,n} \exp(2\pi^2 \kappa_1 + \frac{1}{2} \sum L_i \psi_i) \rangle$, belong to ENT via $x = z^2/2$, $y = \cos(2\pi z)/z$.

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000



Definition (Double ramification cycle)

Let *A* be a zero sum vector of integers of length *n*, $a = a_+ \sqcup a_0 \sqcup a_-$. Let stab: $\overline{\mathcal{M}}_{g,a_0}(\mathbb{P}^1, a_-(0), a_+(\infty))^{\sim} \longrightarrow \overline{\mathcal{M}}_{g,n}$ the map stabilising the target of the moduli space of stable maps to rubber \mathbb{P}^1 relative to the partitions over zero and infinity defined by the positive and the negative elements of *A*. Then

$DR_{g,n}(a_1,\ldots,a_n) := \operatorname{stab}_*[\overline{\mathcal{M}}_{g,a_n}(\mathbb{P}^1,a_-(0),a_+(\infty))^{\sim}]^{\operatorname{vir}}$

Why Double Ramification cycles?

- Eliashberg problem: what is a good compactification?
- Hain formula on compact type, polynomial in a_i of degree 2g
- Faber and Pandharipande prove it tautological of degree g
- Central object in the construction of Buryak integrable hierarchy from a Cohft, conjecturally Miura equivalent to and therefore extending Dubrovin Zhang construction.
- Many different approaches in algebraic geometry for its description/construction...

Theorem ((Janda, Pixton, Pandharipande, Zvonkine), Proof of Pixton conjecture)

$$DR_{g,n}(a_1,\ldots,a_n) = \left(r \cdot [\deg = g] \cdot \Omega_{g,n}^{[1]}(r,r,a_1,\ldots,a_n)\right)\Big|_{r=0} \qquad r >> a_i$$

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

Definition (Double ramification cycle)

Let *A* be a zero sum vector of integers of length *n*, $a = a_+ \sqcup a_0 \sqcup a_-$. Let stab: $\overline{\mathcal{M}}_{g,a_0}(\mathbb{P}^1, a_-(0), a_+(\infty))^\sim \longrightarrow \overline{\mathcal{M}}_{g,n}$ the map stabilising the target of the moduli space of stable maps to rubber \mathbb{P}^1 relative to the partitions over zero and infinity defined by the positive and the negative elements of *A*. Then

$$DR_{g,n}(a_1,\ldots,a_n) := \operatorname{stab}_*[\overline{\mathcal{M}}_{g,a_n}(\mathbb{P}^1,a_-(0),a_+(\infty))^{\sim}]^{\operatorname{Vil}}$$

Why Double Ramification cycles?

- Eliashberg problem: what is a good compactification?
- Hain formula on compact type, polynomial in a_i of degree 2g
- Faber and Pandharipande prove it tautological of degree g
- Central object in the construction of Buryak integrable hierarchy from a Cohft, conjecturally Miura
 equivalent to and therefore extending Dubrovin Zhang construction.
- Many different approaches in algebraic geometry for its description/construction...

Theorem ((Janda, Pixton, Pandharipande, Zvonkine), Proof of Pixton conjecture)

$$DR_{g,n}(a_1,\ldots,a_n) = \left(r \cdot [\deg = g] \cdot \Omega_{g,n}^{[1]}(r,r,a_1,\ldots,a_n)\right)\Big|_{r=0} \qquad r >> a_i$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition (Double ramification cycle)

Let *A* be a zero sum vector of integers of length *n*, $a = a_+ \sqcup a_0 \sqcup a_-$. Let stab: $\overline{\mathcal{M}}_{g,a_0}(\mathbb{P}^1, a_-(0), a_+(\infty))^\sim \longrightarrow \overline{\mathcal{M}}_{g,n}$ the map stabilising the target of the moduli space of stable maps to rubber \mathbb{P}^1 relative to the partitions over zero and infinity defined by the positive and the negative elements of *A*. Then

$$DR_{g,n}(a_1,\ldots,a_n) := \operatorname{stab}_*[\overline{\mathcal{M}}_{g,a_n}(\mathbb{P}^1,a_-(0),a_+(\infty))^{\sim}]^{\operatorname{vi}}$$

Why Double Ramification cycles?

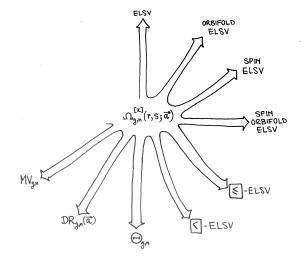
- Eliashberg problem: what is a good compactification?
- Hain formula on compact type, polynomial in a_i of degree 2g
- Faber and Pandharipande prove it tautological of degree g
- Central object in the construction of Buryak integrable hierarchy from a Cohft, conjecturally Miura
 equivalent to and therefore extending Dubrovin Zhang construction.
- Many different approaches in algebraic geometry for its description/construction...

Theorem ((Janda, Pixton, Pandharipande, Zvonkine), Proof of Pixton conjecture)

$$DR_{g,n}(a_1,\ldots,a_n) = \left(r \cdot [\deg = g] \cdot \Omega_{g,n}^{[1]}(r,r,a_1,\ldots,a_n)\right)\Big|_{r=0} \qquad r >> a_i$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000



Definition (Masur-Veech polynomials)

For 2g - 2 + n > 0 define $V\Omega_{g,n}^{MV}(L_1, \ldots, L_n)$ as

$$\sum_{\Gamma \in \mathbf{G}_{\mathcal{G}, \mathcal{D}}} \frac{1}{|\operatorname{Aut} \Gamma|} \int_{\mathbb{R}_{+}^{E_{\Gamma}}} \prod_{v \in V_{\Gamma}} V\Omega_{h(v), k(v)}^{K}((\ell_{\theta})_{\theta \in E(v)}, (L_{\lambda})_{\lambda \in \Lambda(v)}) \prod_{e \in E_{\Gamma}} \frac{\ell_{e} d\ell_{e}}{e^{\ell_{e}} - 1},$$

which is of total degree 3g - 3 + n, where $V\Omega_{g,n}^{K}(L_1, \ldots, L_n) = \left\langle \exp\left(\frac{1}{2}\sum_{i=1}^n L_i^2 \psi_i\right) \right\rangle$

Theorem (Delecroix, Goujard, Zograf, Zorich)

Let $MV_{g,n}$ be the Masur-Veech volumes associated with the principal strata of the moduli spaces of quadratic differentials of genus g with n marked points. Then

$$MV_{g,n} = \frac{2^{4g-2+n}(4g-4+n)!}{(6g-7+2n)!} V\Omega_{g,n}^{\rm MV}(0,\ldots,0).$$
(1)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

Definition (Masur-Veech polynomials)

For 2g - 2 + n > 0 define $V\Omega_{g,n}^{MV}(L_1, \ldots, L_n)$ as

$$\sum_{\Gamma \in \mathbf{G}_{\mathcal{G}, \mathcal{D}}} \frac{1}{|\operatorname{Aut} \Gamma|} \int_{\mathbb{R}_{+}^{E} \Gamma} \prod_{v \in V_{\Gamma}} V\Omega_{h(v), k(v)}^{K}((\ell_{\theta})_{\theta \in E(v)}, (L_{\lambda})_{\lambda \in \Lambda(v)}) \prod_{\theta \in E_{\Gamma}} \frac{\ell_{\theta} d\ell_{\theta}}{e^{\ell_{\theta}} - 1},$$

which is of total degree 3g - 3 + n, where $V\Omega_{g,n}^{K}(L_1, \ldots, L_n) = \left\langle \exp\left(\frac{1}{2}\sum_{i=1}^{n}L_i^2\psi_i\right) \right\rangle$

Theorem (Delecroix, Goujard, Zograf, Zorich)

Let $MV_{g,n}$ be the Masur-Veech volumes associated with the principal strata of the moduli spaces of quadratic differentials of genus g with n marked points. Then

$$MV_{g,n} = \frac{2^{4g-2+n}(4g-4+n)!}{(6g-7+2n)!} \, V\Omega_{g,n}^{\rm MV}(0,\ldots,0). \tag{1}$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Theorem (Topological Recursion for Masur-Veech volumes. Andersen, Borot, Charbonnier, Delecroix, Giacchetto, L, Wheeler 2019)

Masur-Veech volumes of quadratic differentials belong to ENT. More precisely, the spectral curve given on the Riemann sphere by

$$x(z) = \frac{z^2}{2}, \qquad y(z) = -z, \qquad \omega_{0,2}^{\text{MV}}(z_1, z_2) = \frac{dz_1 \otimes dz_2}{(z_1 - z_2)^2} + \frac{1}{2} \sum_{m \in \mathbb{Z}^*} \frac{dz_1 \otimes dz_2}{(z_1 - z_2 + m)^2},$$

produces TR output expanded in the Riemann-Hurwitz functions $\zeta_{\rm H}(\ell,z) = \sum_{m\in\mathbb{Z}}(z+m)^{-\ell}$

$$\omega_{g,n}^{\mathsf{MV}}(z_1,\ldots,z_n) = \sum_{d_1+\cdots+d_n \leq 3g-3+n} F_{g,n}^{\mathsf{MV}}[d_1,\ldots,d_n] \bigotimes_{i=1}^{\prime \prime} \zeta_{\mathsf{H}}(2d_i+2;z_i) \, \mathrm{d} z_i.$$

where $F_{q,n}^{MV}$ are the coefficients of $V\Omega_{q,n}^{MV}$ in the expansion:

$$V\Omega_{g,n}^{MV}(L_1,\ldots,L_n) = \sum_{d_1 + \cdots + d_n \leq 3g-3+n} F_{g,n}^{MV}[d_1,\ldots,d_n] \prod_{i=1}^n \frac{L_i^{2d_i}}{(2d_i+1)!}.$$

 First compute the entire collection of polynomials VΩ^{MV}_{g,n} up to a certain level in the Euler characteristic, then extract MV volumes.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Conjecture (Masur-Veech volumes for fixed genus)

For any fixed genus $g \ge 0$, there exist polynomials $p_g, q_g \in \mathbb{Q}[n]$ such that, for any $n \ge 0$

$$\frac{MV_{g,n}}{\pi^{6g-6+2n}} = 2^n \frac{(2g-3+n)!(4g-4+n)!}{(6g-7+2n)!} \left(p_g(n) + \gamma_{2g-3+n} q_g(n) \right), \qquad \gamma_k = \frac{1}{4^k} \binom{2k}{k}.$$

of explicit degrees growing linearly with the genus.

Theorem (Chen, Möller, Sauvaget)

MV conjecture for fixed g holds true. Key ingredient for the proof: ELSV for MV.

$$\frac{MV_{g,n}}{\pi^{6g-6+2n}} = 2^{2g+1} \frac{(-1)^{3g-3+n}(4g-4+n)!}{(6g-7+2n)!} \int_{\overline{\mathcal{M}}_{G,n}} \left(\Omega^{[1]}(1,-1;\vec{1})\right)^{-1}$$

Moreover, factorisation Chiodo classes allows expression in Hodge integrals against ψ_{1}^{2}

Corollary (Borot, Giacchetto, L. Appendix to result above)

 $(\Omega^{[1]}(1,-1;\vec{1}))^{-1} = \Omega^{[-1]}(1,2;\vec{1})$, hence $MV_{g,n}$ belong to ENT in a second inequivalent way, via

$$\Sigma = \mathbb{CP}^{1}, \qquad x(z) = -z - \log(z), \qquad y(z) = z^{2}, \qquad \omega_{0,2}(z_{1}, z_{2}) = \frac{dz_{1} \otimes dz_{2}}{(z_{1} - z_{2})^{2}}$$

SQA

Kazarian: KP integrability of Hodge integrals to compute MV volumes recursively

🕽 Yang, Zagier, Zhang: ILW integrability to compute MV volumes requisively 🗗 🖌 🚊 🛌 🛓

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Conjecture (Masur-Veech volumes for fixed genus)

For any fixed genus $g \ge 0$, there exist polynomials $p_g, q_g \in \mathbb{Q}[n]$ such that, for any $n \ge 0$

$$\frac{MV_{g,n}}{\pi^{6g-6+2n}} = 2^n \frac{(2g-3+n)!(4g-4+n)!}{(6g-7+2n)!} \left(p_g(n) + \gamma_{2g-3+n} q_g(n) \right), \qquad \gamma_k = \frac{1}{4^k} \binom{2k}{k}.$$

of explicit degrees growing linearly with the genus.

Theorem (Chen, Möller, Sauvaget)

MV conjecture for fixed g holds true. Key ingredient for the proof: ELSV for MV.

$$\frac{MV_{g,n}}{\pi^{6g-6+2n}} = 2^{2g+1} \frac{(-1)^{3g-3+n}(4g-4+n)!}{(6g-7+2n)!} \int_{\overline{\mathcal{M}}_{g,n}} \left(\Omega^{[1]}(1,-1;\overline{i})\right)^{-1}$$

Moreover, factorisation Chiodo classes allows expression in Hodge integrals against ψ_i^2 .

Corollary (Borot, Giacchetto, L. Appendix to result above)

 $(\Omega^{[1]}(1,-1;\vec{1}))^{-1} = \Omega^{[-1]}(1,2;\vec{1})$, hence $MV_{a,n}$ belong to ENT in a second inequivalent way, via

$$\Sigma = \mathbb{CP}^{1}, \qquad x(z) = -z - \log(z), \qquad y(z) = z^{2}, \qquad \omega_{0,2}(z_{1}, z_{2}) = \frac{dz_{1} \otimes dz_{2}}{(z_{1} - z_{2})^{2}}$$

Kazarian: KP integrability of Hodge integrals to compute MV volumes recursively

🕽 Yang, Zagier, Zhang: ILW integrability to compute MV volumes requisively 🗗 🖌 र 🖘 र 🗐 🖉 ९, 🕫

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

Conjecture (Masur-Veech volumes for fixed genus)

For any fixed genus $g \ge 0$, there exist polynomials $p_g, q_g \in \mathbb{Q}[n]$ such that, for any $n \ge 0$

$$\frac{MV_{g,n}}{\pi^{6g-6+2n}} = 2^n \frac{(2g-3+n)!(4g-4+n)!}{(6g-7+2n)!} \left(p_g(n) + \gamma_{2g-3+n} q_g(n) \right), \qquad \gamma_k = \frac{1}{4^k} \binom{2k}{k}.$$

of explicit degrees growing linearly with the genus.

Theorem (Chen, Möller, Sauvaget)

MV conjecture for fixed g holds true. Key ingredient for the proof: ELSV for MV.

$$\frac{MV_{g,n}}{\pi^{6g-6+2n}} = 2^{2g+1} \frac{(-1)^{3g-3+n}(4g-4+n)!}{(6g-7+2n)!} \int_{\overline{\mathcal{M}}_{g,n}} \left(\Omega^{[1]}(1,-1;\overline{i})\right)^{-1}$$

Moreover, factorisation Chiodo classes allows expression in Hodge integrals against ψ_i^2 .

Corollary (Borot, Giacchetto, L. Appendix to result above)

 $(\Omega^{[1]}(1, -1; \vec{1}))^{-1} = \Omega^{[-1]}(1, 2; \vec{1})$, hence $MV_{g,n}$ belong to ENT in a second inequivalent way, via

$$\Sigma = \mathbb{CP}^1, \qquad x(z) = -z - \log(z), \qquad y(z) = z^2, \qquad \omega_{0,2}(z_1, z_2) = \frac{dz_1 \otimes dz_2}{(z_1 - z_2)^2}$$

Kazarian: KP integrability of Hodge integrals to compute MV volumes recursively

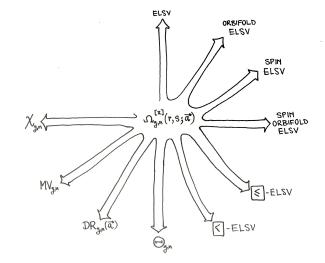
🕨 Yang, Zagier, Zhang: ILW integrability to compute MV volumes recursively 👩 🗸 🖘 🖘 🖘 🖉 🔿 🤈 🥐

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000

g	$p_g(n)$	q _g (n)
0	0	$\frac{1}{4}$
1	$\frac{1}{6}$	$\frac{1}{6}$
2	<u>5</u> 36	$\frac{28}{135}n + \frac{7}{18}$
3	$\frac{245}{3888}n + \frac{643}{1944}$	$\frac{1784}{8505}n + \frac{6523}{8505}$
4	$\frac{1757}{23328}n + \frac{95413}{194400}$	$\tfrac{1186528}{23455575}n^2 + \tfrac{40882696}{54729675}n + \tfrac{5951381}{2296350}$
5	$\tfrac{38213}{3359232}n^2 + \tfrac{4218671}{16796160}n + \tfrac{63657059}{48988800}$	$\tfrac{83632064}{1196234325}n^2+\tfrac{50144427856}{41868201375}n+\tfrac{63849553}{12629925}$
6	$\tfrac{59406613}{3325639680}n^2 + \tfrac{11411443987}{27713664000}n + \tfrac{61888029881}{26453952000}$	$\tfrac{2562397434368}{352859220016875}n^3 + \tfrac{185272285982144}{640374140030625}n^2 + \tfrac{9008283258227896}{2470014540118125}n + \tfrac{1636294928657}{110827591875}$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	00000	000



▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

Remark (Giacchetto, L, Norbury)

$$\chi_{g,n} = \int_{\overline{\mathcal{M}}_{g,n}} \Omega_{g,n}^{[1]}(1,-1;\vec{1})$$

- Euler characteristic as integral of the log cotangent + def Chiodo classes + Serre duality
- $MV_{g,n}$ are proportional to the integral of $\Omega_{g,n}^{[1]}(1,-1;\vec{1})^{-1}$
- Application:

$$\chi_{g,n} = \int_{\overline{\mathcal{M}}_{g,n}} C(\mathbb{E}^{\vee}) \exp\left(-\sum_{m>1} \frac{1}{m} \kappa_m\right)$$

- New proof of Harer-Zager formula for $\chi_{g,n}$ (expand the exp in ψ + string, dilaton, initial condition for n = 0)
- Tested computationally via admcycles Sage package (Delecroix, Schmitt, van Zelm), new library with Schmitt with all ELSV formulae.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Remark (Giacchetto, L, Norbury)

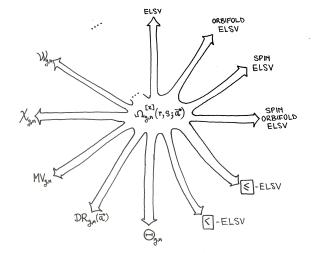
$$\chi_{g,n} = \int_{\overline{\mathcal{M}}_{g,n}} \Omega_{g,n}^{[1]}(1,-1;\vec{1})$$

- Euler characteristic as integral of the log cotangent + def Chiodo classes + Serre duality
- $MV_{g,n}$ are proportional to the integral of $\Omega_{g,n}^{[1]}(1,-1;\vec{1})^{-1}$
- Application:

$$\chi_{g,n} = \int_{\overline{\mathcal{M}}_{g,n}} c(\mathbb{E}^{\vee}) \exp\left(-\sum_{m>1} \frac{1}{m} \kappa_m\right)$$

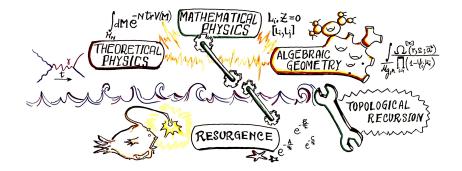
- New proof of Harer-Zager formula for $\chi_{g,n}$ (expand the exp in ψ + string, dilaton, initial condition for n = 0)
- Tested computationally via admcycles Sage package (Delecroix, Schmitt, van Zelm), new library with Schmitt with all ELSV formulae.

Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	00000000000000000000000000000	00000	000



Introduction	Hurwitz theory	Chiodo classes Ω	Integrability for Ω	Resurgence
00	0000000	000000000000000000000000000000000000000	0000	000

What about the integrability of Chiodo integrals for arbitrary parameters?



Theorem (Kazarian, '08)

The generating series of Hodge integrals in the formal commuting variables u, T_i ,

$$G(u;\vec{t}) = \sum_{j,k_j=0} (-u^2)^j \langle \lambda_j \tau_0^{k_0} \tau_1^{k_1} \dots \rangle \frac{\overline{t_0}^{k_0}}{k_0!} \frac{\overline{t_1}^{k_1}}{k_1!} \dots,$$
(2)

is a **solution of the KP hierarchy** with respect to the variables q_i (identically in u), after the following linear triangular change of variables $T_i = T_i(q_i)$:

$$\phi_0(u, z) := z, \quad \phi_{k+1}(u, z) := D^{k+1} \phi_0(u, z), \quad D := (u+z)^2 z \frac{d}{dz}$$

For instance

$$\phi_0 = z$$
, $\phi_1 = u^2 z + 2uz^2 + z^3$, $\phi_2 = u^4 z + 6u^3 z^2 + 12u^2 z^3 + 10uz^4 + 3z^5$, ...

Then T_k is obtained form ϕ_k by replacing z^m by q_m in each monomial. For instance

$$T_0 = q_1$$
, $T_1 = u^2 q_1 + 2 u q_2 + q_3$, $T_2 = u^4 q_1 + 6 u^3 q_2 + 12 u^2 q_3 + 10 u q_4 + 3 q_5$

Equivalently, T_k is given by the following recursive equation

$$T_{k+1} = \sum_{m \ge 1} m \left(u^2 \, q_m + 2 \, u \, q_{m+1} + q_{m+2} \right) \frac{d}{dq_m} T_k, \qquad T_0 = q_1.$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Theorem (Kazarian, '08)

The generating series of Hodge integrals in the formal commuting variables u, T_i ,

$$G(u; \vec{I}) = \sum_{j, k_j = 0} (-u^2)^j \langle \lambda_j \tau_0^{k_0} \tau_1^{k_1} \dots \rangle \frac{\overline{l_0}^{k_0}}{k_0!} \frac{\overline{l_1}^{k_1}}{k_1!} \dots,$$
(2)

is a **solution of the KP hierarchy** with respect to the variables q_i (identically in u), after the following linear triangular change of variables $T_i = T_i(q_i)$:

$$\phi_0(u, z) := z, \quad \phi_{k+1}(u, z) := D^{k+1} \phi_0(u, z), \quad D := (u+z)^2 z \frac{d}{dz}$$

For instance

$$\phi_0 = z, \quad \phi_1 = u^2 z + 2uz^2 + z^3, \quad \phi_2 = u^4 z + 6u^3 z^2 + 12u^2 z^3 + 10uz^4 + 3z^5, \quad \dots$$

Then T_k is obtained form ϕ_k by replacing z^m by q_m in each monomial. For instance

$$T_0 = q_1$$
, $T_1 = u^2 q_1 + 2 u q_2 + q_3$, $T_2 = u^4 q_1 + 6 u^3 q_2 + 12 u^2 q_3 + 10 u q_4 + 3 q_5$

Equivalently, T_k is given by the following recursive equation

$$T_{k+1} = \sum_{m \ge 1} m (u^2 q_m + 2 u q_{m+1} + q_{m+2}) \frac{d}{dq_m} T_k, \qquad T_0 = q_1.$$

▲□▶▲□▶▲□▶▲□▶ □ シッペ

Theorem (Kazarian, '08)

The generating series of Hodge integrals in the formal commuting variables u, T_i ,

$$G(u; \vec{I}) = \sum_{j, k_j = 0} (-u^2)^j \langle \lambda_j \tau_0^{k_0} \tau_1^{k_1} \dots \rangle \frac{\overline{l_0}^{k_0}}{k_0!} \frac{\overline{l_1}^{k_1}}{k_1!} \dots,$$
(2)

is a **solution of the KP hierarchy** with respect to the variables q_i (identically in u), after the following linear triangular change of variables $T_i = T_i(q_i)$:

$$\phi_0(u, z) := z, \quad \phi_{k+1}(u, z) := D^{k+1} \phi_0(u, z), \quad D := (u+z)^2 z \frac{d}{dz}$$

For instance

$$\phi_0 = z, \quad \phi_1 = u^2 z + 2uz^2 + z^3, \quad \phi_2 = u^4 z + 6u^3 z^2 + 12u^2 z^3 + 10uz^4 + 3z^5, \quad \dots$$

Then T_k is obtained form ϕ_k by replacing z^m by q_m in each monomial. For instance

$$T_0 = q_1$$
, $T_1 = u^2 q_1 + 2 u q_2 + q_3$, $T_2 = u^4 q_1 + 6 u^3 q_2 + 12 u^2 q_3 + 10 u q_4 + 3 q_5$

Equivalently, T_k is given by the following recursive equation

$$T_{k+1} = \sum_{m \ge 1} m \left(u^2 \, q_m + 2 \, u \, q_{m+1} + q_{m+2} \right) \frac{d}{dq_m} T_k, \qquad T_0 = q_1.$$

▲□▶▲□▶▲□▶▲□▶ □ シッペ

Corollary (Kazarian)

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,...,k_n} h_{g,\vec{k}} \beta^m p_{\vec{k}}$.
- Plug in ELSV formula: $h_{g,\vec{k}} = \prod_{i=1}^{n} \frac{k_i^{K_i}}{k_i!} \left\langle \sum_{j,d_i} (-1)^j \lambda_j \prod_{i=1}^{n} \psi_i^{d_i} \right\rangle$

• Set
$$T_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{T})$$

• Control the T change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z}e^{-\frac{p_z}{1+\beta z}}$

Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2) z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability emarks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.
- The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

Corollary (Kazarian)

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,\ldots,k_n} h_{a;\vec{k}} \beta^m p_{\vec{k}}$.
- Plug in ELSV formula: $h_{g,\vec{k}} = \prod_{l=1}^{n} \frac{k_l^{k_l}}{k_l!} \left\langle \sum_{j,d_l} (-1)^j \lambda_j \prod_{l=1}^{n} \psi_l^{d_l} \right\rangle$

• Set
$$T_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{T})$$

• Control the T change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z}e^{-\frac{p_z}{1+\beta z}}$

Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2) z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability emarks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.
- The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

シック・ 川 ・ ・ 川 ・ ・ 一 ・ シック

Corollary (Kazarian)

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,...,k_n} h_{g;\vec{k}} \beta^m p_{\vec{k}}$.
- Plug in ELSV formula: $h_{g,\vec{k}} = \prod_{i=1}^{n} \frac{k_i^{k_i}}{k_i!} \left\langle \sum_{j,d_i} (-1)^j \lambda_j \prod_{i=1}^{n} \psi_i^{d_i} \right\rangle$

• Set
$$T_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{T})$$

Control the T change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z}e^{-\frac{p_z}{1+\beta z}}$

Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2) z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability emarks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.
- The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,\dots,k_n} h_{g;\vec{k}} \beta^m p_{\vec{k}}$.
- $\bullet \quad \text{Plug in ELSV formula: } h_{g;\vec{k}} = \prod_{i=1}^n \frac{k_i^{k_i}}{k_i!} \Big\langle \sum_{j,d_i} (-1)^j \lambda_j \prod_{i=1}^n \psi_i^{d_i} \Big\rangle$

• Set
$$I_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{t})$$

• Control the T change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z}e^{-\frac{\beta Z}{1+\beta Z}}$

Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2) z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability emarks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.
- The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,...,k_n} h_{g;\vec{k}} \beta^m p_{\vec{k}}$.
- Plug in ELSV formula: $h_{g,\vec{k}} = \prod_{i=1}^{n} \frac{k_i^{K_i}}{k_i!} \left\langle \sum_{j,d_i} (-1)^j \lambda_j \prod_{i=1}^{n} \psi_i^{d_i} \right\rangle$

• Set
$$I_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

• Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{t})$$

Control the T change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z} e^{-\frac{\beta z}{1+\beta z}}$

Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2)z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability marks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.
- The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,...,k_n} h_{g;\vec{k}} \beta^m p_{\vec{k}}$.
- Plug in ELSV formula: $h_{g,\vec{k}} = \prod_{i=1}^{n} \frac{k_i^{k_i}}{k_i!} \left\langle \sum_{j,d_i} (-1)^j \lambda_j \prod_{i=1}^{n} \psi_i^{d_i} \right\rangle$

• Set
$$I_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

• Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{t})$$

• Control the 7 change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z}e^{-\frac{\beta z}{1+\beta z}}$

Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2) z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability marks (questions:

Remarks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.
- The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,...,k_n} h_{g;\vec{k}} \beta^m p_{\vec{k}}$.
- $\bullet \quad \text{Plug in ELSV formula: } h_{g;\vec{k}} = \prod_{i=1}^n \frac{k_i^{k_i}}{k_i!} \Big\langle \sum_{j,d_i} (-1)^j \lambda_j \prod_{i=1}^n \psi_i^{d_i} \Big\rangle$

• Set
$$I_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

• Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{t})$$

• Control the 7 change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z}e^{-\frac{\beta z}{1+\beta z}}$

• Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2) z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability emarks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.
- The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,...,k_n} h_{g;\vec{k}} \beta^m p_{\vec{k}}$.
- Plug in ELSV formula: $h_{g;\vec{k}} = \prod_{l=1}^{n} \frac{k_l^{k_l}}{k_l!} \left\langle \sum_{j,d_l} (-1)^j \lambda_j \prod_{l=1}^{n} \psi_l^{d_l} \right\rangle$

• Set
$$I_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

• Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{t})$$

• Control the T change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z}e^{-\frac{\beta Z}{1+\beta z}}$

• Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2) z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

• Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability marks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.
- The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,...,k_n} h_{g;\vec{k}} \beta^m p_{\vec{k}}$.
- Plug in ELSV formula: $h_{g;\vec{k}} = \prod_{l=1}^{n} \frac{k_l^{k_l}}{k_l!} \left\langle \sum_{j,d_l} (-1)^j \lambda_j \prod_{l=1}^{n} \psi_l^{d_l} \right\rangle$

• Set
$$I_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

• Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{t})$$

• Control the T change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z}e^{-\frac{\beta Z}{1+\beta z}}$

• Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2) z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

• Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability Remarks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.
- The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,...,k_n} h_{g;\vec{k}} \beta^m p_{\vec{k}}$.
- Plug in ELSV formula: $h_{g;\vec{k}} = \prod_{l=1}^{n} \frac{k_l^{k_l}}{k_l!} \left\langle \sum_{j,d_l} (-1)^j \lambda_j \prod_{l=1}^{n} \psi_l^{d_l} \right\rangle$

• Set
$$I_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

• Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{t})$$

• Control the T change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z}e^{-\frac{\beta Z}{1+\beta z}}$

• Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2) z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

• Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability Remarks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.

The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

Witten Conjecture / Kontsevich Theorem for u = 0.

Strategy of the proof:

- By Okounkov H is a solution of KP in the p_i : $H(\beta; \vec{p}) = \sum_{n \ge 1} \frac{1}{n!} \sum_{g,k_1,...,k_n} h_{g;\vec{k}} \beta^m p_{\vec{k}}$.
- Plug in ELSV formula: $h_{g;\vec{k}} = \prod_{l=1}^{n} \frac{k_l^{k_l}}{k_l!} \left\langle \sum_{j,d_l} (-1)^j \lambda_j \prod_{l=1}^{n} \psi_l^{d_l} \right\rangle$

• Set
$$I_d = \sum_{k \ge 1} \frac{k^{k+d}}{k!} \beta^{k+\frac{1}{3}+\frac{2}{3}d} p_k$$
 and $u = \beta^{\frac{1}{3}}$.

• Notice
$$H - H_{0,1} - H_{0,2} = G(u, \vec{t})$$

• Control the T change of variable: $p_k \leftrightarrow x^k$, $q_k \leftrightarrow z^k$ via $x(z) := \frac{z}{1+\beta z}e^{-\frac{\beta Z}{1+\beta z}}$

• Express the flow along the time β as a vector field $\frac{d}{d\beta}x(z) = -(2z + \beta z^2) z \frac{d}{dz}x(z)$ that can be represented as an element of $\widehat{\mathfrak{gl}(\infty)}$. Then prove KP integrability for $\beta = 0$.

• Show that removing (0, 1) and (0, 2) unstable contribution does not spoil the integrability Remarks/questions:

- Hurwitz numbers obey KP and they are in ENT. Their CohFT is Hodge.
- What is the integrability of Hodge? The change of variable given by the spectral curve preserves KP. As a result, Hodge also obeys KP.
- The spectral curve acts as a transfer of integrability between the enumerative problem and the CohFT. How general is this behaviour?

Theorem (Giacchetto, L, Norbury)

Let q, r be positive integers. The generating series Chiodo integrals in the formal commuting variables $u, \{I_{d,a}\}_{d \ge 0, a=1,...,qr}$.

$$G^{qr,q}(u;\vec{I}) = \sum_{g,n} \frac{1}{n!} \sum_{\alpha_1,\dots,\alpha_n=1}^{qr} \int_{\overline{\mathcal{M}}g,n} \Omega_{g,n}^{[u]}(qr,q;qr-a) \prod_{i=1}^n \sum_{d_i \ge 0} \overline{I}_{d_i,a_i} \psi_i^{d_i}.$$
 (3)

is a solution of the KP hierarchy with respect to the variables q_i (identically in u), after the linear triangular change of variables $I_{d,a} = I_{d,a}(u; \vec{q})$, defined for $a = 1, ..., q_r$ recursively by $I_{0,a} = u^{|L| - \frac{Q}{q_r}} q_a$ and

$$T_{d,\alpha}(u;\vec{q}) = \sum_{b\geq 1} f_{b,\alpha,q,t}(u,\vec{q}) \frac{\partial}{\partial q_{qr(b-1)+\alpha}} T_{d-1,\alpha}(u;\vec{q}),$$

$$f_{b,a,q,r}(u,\vec{q}) = u^2 \left(b - 1 + \frac{a}{qr} \right) q_{qr(b-1)+a} + u \left(2b - 1 + \frac{a}{qr} \right) q_{qrb+a} + b q_{qr(b+1)+a}$$

For instance

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

Theorem (Giacchetto, L, Norbury)

Let q, r be positive integers. The generating series Chiodo integrals in the formal commuting variables $u, \{I_{d,a}\}_{d \ge 0, a=1,...,qr}$.

$$G^{qr,q}(u;\vec{t}) = \sum_{g,n} \frac{1}{n!} \sum_{a_1,\dots,a_{n-1}}^{qr} \int_{\overline{\mathcal{M}}g,n} \Omega_{g,n}^{[u]}(qr,q;qr-a) \prod_{i=1}^n \sum_{d_i \ge 0} T_{d_i,a_i} \psi_i^{d_i}.$$
 (3)

is a **solution of the KP hierarchy** with respect to the variables q_i (identically in u), after the linear triangular change of variables $T_{d,a} = T_{d,a}(u; \vec{q})$, defined for a = 1, ..., qr recursively by $T_{0,a} = u^{1-\frac{a}{qr}} q_a$ and

$$T_{d,\sigma}(u;\vec{q}) = \sum_{b\geq 1} f_{b,\sigma,q,r}(u,\vec{q}) \frac{\partial}{\partial q_{qr(b-1)+\sigma}} T_{d-1,\sigma}(u;\vec{q}),$$

$$f_{b,a,q,r}(u,\vec{q}) = u^2 \left(b - 1 + \frac{a}{qr} \right) q_{qr(b-1)+a} + u \left(2b - 1 + \frac{a}{qr} \right) q_{qrb+a} + b q_{qr(b+1)+a}$$

For instance:

$$\begin{split} T_{1,\alpha} &= u^{1-\frac{\alpha}{Q_{f}}} \left(u^{2} \frac{\alpha}{q_{f}} q_{\alpha} + u(1+\frac{\alpha}{q_{f}}) q_{q'+\alpha} + q_{2qr+\alpha} \right) \\ T_{2,\alpha} &= u^{1-\frac{\alpha}{Q_{f}}} \left(u^{4} \left(\frac{\alpha}{q_{f}} \right)^{2} q_{\alpha} + u^{3} \left(1+3\frac{\alpha}{q_{f}} + 2\left(\frac{\alpha}{q_{f}} \right)^{2} \right) q_{q'+\alpha} \right. \\ &+ u^{2} \left(5+6\frac{\alpha}{q_{f}} + \left(\frac{\alpha}{q_{f}} \right)^{2} \right) q_{2qr+\alpha} + u(7+3\frac{\alpha}{q_{f}}) q_{3qr+\alpha} + 3q_{4qr+\alpha} \right) \end{split}$$

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

Theorem (Giacchetto, L, Norbury)

Let q, r be positive integers. The generating series Chiodo integrals in the formal commuting variables $u, \{I_{d,a}\}_{d \ge 0, a=1,...,qr}$.

$$G^{qr,q}(u;\vec{t}) = \sum_{g,n} \frac{1}{n!} \sum_{\alpha_1,\dots,\alpha_n=1}^{qr} \int_{\overline{\mathcal{M}}g,n} \Omega_{g,n}^{[u]}(qr,q;qr-a) \prod_{i=1}^n \sum_{d_i \ge 0} T_{d_i,\alpha_i} \psi_i^{d_i}.$$
 (3)

is a **solution of the KP hierarchy** with respect to the variables q_i (identically in u), after the linear triangular change of variables $T_{d,a} = T_{d,a}(u; \vec{q})$, defined for a = 1, ..., qr recursively by $T_{0,a} = u^{1-\frac{a}{qr}} q_a$ and

$$T_{d,\sigma}(u;\vec{q}) = \sum_{b\geq 1} f_{b,\sigma,q,r}(u,\vec{q}) \frac{\partial}{\partial q_{qr(b-1)+\sigma}} T_{d-1,\sigma}(u;\vec{q}),$$

$$f_{b,a,q,r}(u,\vec{q}) = u^2 \left(b - 1 + \frac{a}{qr}\right) q_{qr(b-1)+a} + u \left(2b - 1 + \frac{a}{qr}\right) q_{qrb+a} + b q_{qr(b+1)+a}$$

For instance:

$$\begin{split} T_{1,\sigma} &= u^{1-\frac{\sigma}{q_{f}}} \left(u^{2} \frac{\sigma}{q_{f}} q_{\sigma} + u(1 + \frac{\sigma}{q_{f}}) q_{q_{f}+\sigma} + q_{2q_{f}+\sigma} \right) \\ T_{2,\sigma} &= u^{1-\frac{\sigma}{q_{f}}} \left(u^{4} (\frac{\sigma}{q_{f}})^{2} q_{\sigma} + u^{3} \left(1 + 3 \frac{\sigma}{q_{f}} + 2(\frac{\sigma}{q_{f}})^{2} \right) q_{q_{f}+\sigma} \right. \\ &+ u^{2} \left(5 + 6 \frac{\sigma}{q_{f}} + (\frac{\sigma}{q_{f}})^{2} \right) q_{2q_{f}+\sigma} + u(7 + 3 \frac{\sigma}{q_{f}}) q_{3q_{f}+\sigma} + 3q_{4q_{f}+\sigma} \right) \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Kazarian Theorem for r = q = 1. Witten Conjecture / Kontsevich Theorem for r = q = 1 and u = 0.

Strategy of the proof:

- The generating function H^{qr, q} of spin-orbifold Hurwitz numbers satisfy KP
- Insert Generalised Zvonkine ELSV
- Set $T_{d,a}(\beta; \vec{p}) = \alpha \frac{2d}{3} + \frac{1}{3} \sum_{b} \frac{(b + \frac{a}{q_{f}})^{b+d}}{b!} (qr\beta)^{b+\frac{a}{q_{f}}} p_{qrb+a}$.

Follow the same strategy. Need qr infinite collections of variables that do interact with each other.

• The element representing the β flow is $S_{qr} = -(2\Lambda_{qr} - J_{qr,qr} + qr\beta \Lambda_{2qr} - qr\beta J_{qr,2qr}) \in \widehat{\mathfrak{gl}(\infty)}$, where $\Lambda_m = \frac{1}{2} \sum_{k \in \mathbb{Z}} \alpha_k \alpha_{-m-k}$, $J_{\rho,m} = \frac{1}{2} \sum_{k \in \mathbb{Z}, \rho \nmid k} \alpha_{\rho,k} \alpha_{\rho,-m-k}$, α being (possibly rescaled) the Bosonic operators acting on the Fock space. In particular, $S_1 = -(2\Lambda_1 + \beta\Lambda_2)$ Kazarian operator.

Remarks/considerations:

- Integrals of Ω obeys KP.
- \bigcirc Ω can be the CohFT of many enumerative problems in ENT.
- Therefore Ω can transfer its integrability through the spectral curve, depending on the spectral curve involved.
- Applications to the integrability of classes constructed via Ω even without being involved in ENT.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Kazarian Theorem for r = q = 1. Witten Conjecture / Kontsevich Theorem for r = q = 1 and u = 0.

Strategy of the proof:

- The generating function H^{qr, q} of spin-orbifold Hurwitz numbers satisfy KP
- Insert Generalised Zvonkine ELSV
- Set $T_{d,a}(\beta; \vec{p}) = \alpha \frac{2d}{3} + \frac{1}{3} \sum_{b} \frac{(b + \frac{a}{q_{f}})^{b+d}}{b!} (qr\beta)^{b+\frac{a}{q_{f}}} p_{qrb+a}$.

Follow the same strategy. Need qr infinite collections of variables that do interact with each other.

• The element representing the β flow is $S_{qr} = -(2\Lambda_{qr} - J_{qr,qr} + qr\beta \Lambda_{2qr} - qr\beta J_{qr,2qr}) \in \widehat{\mathfrak{gl}(\infty)}$, where $\Lambda_m = \frac{1}{2} \sum_{k \in \mathbb{Z}} \alpha_k \alpha_{-m-k}$, $J_{\rho,m} = \frac{1}{2} \sum_{k \in \mathbb{Z}, \rho \nmid k} \alpha_{\rho,k} \alpha_{\rho,-m-k}$, α being (possibly rescaled) the Bosonic operators acting on the Fock space. In particular, $S_1 = -(2\Lambda_1 + \beta\Lambda_2)$ Kazarian operator.

Remarks/considerations:

Integrals of Ω obeys KP.

- Ω can be the CohFT of many enumerative problems in ENT.
- Therefore Ω can transfer its integrability through the spectral curve, depending on the spectral curve involved.
- Applications to the integrability of classes constructed via Ω even without being involved in ENT.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Kazarian Theorem for r = q = 1. Witten Conjecture / Kontsevich Theorem for r = q = 1 and u = 0.

Strategy of the proof:

- The generating function H^{qr, q} of spin-orbifold Hurwitz numbers satisfy KP
- Insert Generalised Zvonkine ELSV
- Set $T_{d,a}(\beta; \vec{p}) = \alpha \frac{2d}{3} + \frac{1}{3} \sum_{b} \frac{(b + \frac{a}{q_{f}})^{b+d}}{b!} (qr\beta)^{b+\frac{a}{q_{f}}} p_{qrb+a}$.

Follow the same strategy. Need qr infinite collections of variables that do interact with each other.

• The element representing the β flow is $S_{qr} = -(2\Lambda_{qr} - J_{qr,qr} + qr\beta \Lambda_{2qr} - qr\beta J_{qr,2qr}) \in \widehat{\mathfrak{gl}(\infty)}$, where $\Lambda_m = \frac{1}{2} \sum_{k \in \mathbb{Z}} \alpha_k \alpha_{-m-k}$, $J_{\rho,m} = \frac{1}{2} \sum_{k \in \mathbb{Z}, \rho \nmid k} \alpha_{\rho,k} \alpha_{\rho,-m-k}$, α being (possibly rescaled) the Bosonic operators acting on the Fock space. In particular, $S_1 = -(2\Lambda_1 + \beta\Lambda_2)$ Kazarian operator.

Remarks/considerations:

- Ω can be the CohFT of many enumerative problems in ENT.
- Therefore Ω can transfer its integrability through the spectral curve, depending on the spectral curve involved.
- Applications to the integrability of classes constructed via Ω even without being involved in ENT.
- Still unclear for s not dividing r.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Kazarian Theorem for r = q = 1. Witten Conjecture / Kontsevich Theorem for r = q = 1 and u = 0.

Strategy of the proof:

- The generating function H^{qr, q} of spin-orbifold Hurwitz numbers satisfy KP
- Insert Generalised Zvonkine ELSV
- Set $T_{d,a}(\beta; \vec{p}) = \alpha \frac{2d}{3} + \frac{1}{3} \sum_{b} \frac{(b + \frac{a}{q_{f}})^{b+d}}{b!} (qr\beta)^{b+\frac{a}{q_{f}}} p_{qrb+a}$.

Follow the same strategy. Need qr infinite collections of variables that do interact with each other.

• The element representing the β flow is $S_{qr} = -(2\Lambda_{qr} - J_{qr,qr} + qr\beta \Lambda_{2qr} - qr\beta J_{qr,2qr}) \in \widehat{\mathfrak{gl}(\infty)}$, where $\Lambda_m = \frac{1}{2} \sum_{k \in \mathbb{Z}} \alpha_k \alpha_{-m-k}$, $J_{\rho,m} = \frac{1}{2} \sum_{k \in \mathbb{Z}, \rho \nmid k} \alpha_{\rho,k} \alpha_{\rho,-m-k}$, α being (possibly rescaled) the Bosonic operators acting on the Fock space. In particular, $S_1 = -(2\Lambda_1 + \beta\Lambda_2)$ Kazarian operator.

Remarks/considerations:



Ω can be the CohFT of many enumerative problems in ENT.

Therefore Ω can transfer its integrability through the spectral curve, depending on the spectral curve involved.

igle Applications to the integrability of classes constructed via Ω even without being involved in ENT.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Kazarian Theorem for r = q = 1. Witten Conjecture / Kontsevich Theorem for r = q = 1 and u = 0.

Strategy of the proof:

- The generating function H^{qr, q} of spin-orbifold Hurwitz numbers satisfy KP
- Insert Generalised Zvonkine ELSV
- Set $I_{d,a}(\beta; \vec{p}) = \alpha \frac{2d}{3} + \frac{1}{3} \sum_{b} \frac{(b+\frac{a}{qr})^{b+d}}{b!} (qr\beta)^{b+\frac{a}{qr}} p_{qrb+a}$.

Follow the same strategy. Need qr infinite collections of variables that do interact with each other.

• The element representing the β flow is $S_{qr} = -(2\Lambda_{qr} - J_{qr,qr} + qr\beta \Lambda_{2qr} - qr\beta J_{qr,2qr}) \in \widehat{\mathfrak{gl}(\infty)}$, where $\Lambda_m = \frac{1}{2} \sum_{k \in \mathbb{Z}} \alpha_k \alpha_{-m-k}$, $J_{\rho,m} = \frac{1}{2} \sum_{k \in \mathbb{Z}, \rho \nmid k} \alpha_{\rho,k} \alpha_{\rho,-m-k}$, α being (possibly rescaled) the Bosonic operators acting on the Fock space. In particular, $S_1 = -(2\Lambda_1 + \beta\Lambda_2)$ Kazarian operator.

Remarks/considerations:

Ω can be the CohFT of many enumerative problems in ENT.

 Therefore Ω can transfer its integrability through the spectral curve, depending on the spectral curve involved.

Applications to the integrability of classes constructed via Ω even without being involved in ENT.

Kazarian Theorem for r = q = 1. Witten Conjecture / Kontsevich Theorem for r = q = 1 and u = 0.

Strategy of the proof:

- The generating function H^{qr, q} of spin-orbifold Hurwitz numbers satisfy KP
- Insert Generalised Zvonkine ELSV
- Set $I_{d,\sigma}(\beta; \vec{p}) = \alpha^{\frac{2d}{3} + \frac{1}{3}} \sum_{b} \frac{(b + \frac{a}{qr})^{b+d}}{b!} (qr\beta)^{b+\frac{a}{qr}} p_{qrb+\sigma}$.

Follow the same strategy. Need qr infinite collections of variables that do interact with each other.

• The element representing the β flow is $S_{qr} = -(2\Lambda_{qr} - J_{qr,qr} + qr\beta \Lambda_{2qr} - qr\beta J_{qr,2qr}) \in \widehat{\mathfrak{gl}(\infty)}$, where $\Lambda_m = \frac{1}{2} \sum_{k \in \mathbb{Z}} \alpha_k \alpha_{-m-k}$, $J_{\rho,m} = \frac{1}{2} \sum_{k \in \mathbb{Z}, \rho \nmid k} \alpha_{\rho,k} \alpha_{\rho,-m-k}$, α being (possibly rescaled) the Bosonic operators acting on the Fock space. In particular, $S_1 = -(2\Lambda_1 + \beta\Lambda_2)$ Kazarian operator.

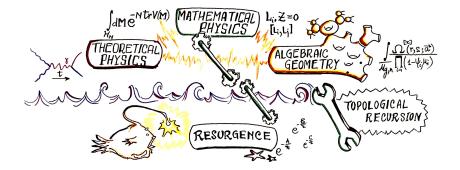
Remarks/considerations:

Ω can be the CohFT of many enumerative problems in ENT.

Therefore Ω can transfer its integrability through the spectral curve, depending on the spectral curve involved.

Applications to the integrability of classes constructed via Ω even without being involved in ENT.

Chiodo classes Ω lie at the foundations of many enumerative problems: we can now control their integrability explicitly. We hope this will contribute soon to the understanding of the bigger picture.



What about resurgence?

- We have many exciting work in progress, with Eynard, Garcia-Failde, Gregori, L., Ooms, Schiappa (subsets of), from different perspective and using different methods, for certain classes of enumerative problems.
- Several results already proved
- Hopefully able to report on some of them in a few months, research agenda at least for over a year.

Thank you!

- J. E. Andersen, G. Borot, S. Charbonnier, V. Delecroix, A. Giacchetto, D. Lewański, and C. Wheeler. Topological recursion for Masur-Veech volumes. arXiv:1905.10352.
- D. Chen, M. Möller, A. Sauvaget, with an appendix by G. Borot, A. Giacchetto, D. Lewański. Masur-Veech volumes and intersection theory: the principal strata of quadratic differentials. arXiv:1912.02267.
- A. Chiodo. Towards an enumerative geometry of the moduli space of twisted curves and r-th roots. Compositio Mathematica 144(06).
- 4. A. Giacchetto, D. Lewański, P. Norbury. KP Hierarchy for Chiodo integrals. To appear.
- 5. M. Kazarian, KP hierarchy for Hodge integrals. Advances in Mathematics 221 (2009) 1-21.
- M. Kazarian, Recursion for Masur-Veech volumes of moduli spaces of quadratic differentials. arXiv:1912.10422.
- D. Lewański, A. Popolitov, S. Shadrin, D. Zvonkine. Chiodo formulas for the r-th roots and topological recursion Letters Mathematical Physics, 107(5), 901-919. 2015.
- D. Yang, D. Zagier, Y. Zhang. Masur-Veech volumes of quadratic differentials and their asymptotics. arXiv:2005.02275.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <