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Preface

In the past few decades, lots of new results have been obtained
exploiting string dualities which connect very different theories and
their math aspects.
▶ AdS/CFT
▶ Mirror symmetry
▶ Topological string/ spectral theory (TS/ST) correspondence
▶ · · ·

With the help of dualities, we can get interesting information on
one side from simpler computation on the other side.



The TS/ST correspondence is in the frame of the topological string.
[Codesido, Grassi, Mariño, Hatsuda]

The topological string theories are the simplified version of the
ordinary physical string theories with the topological twist (A and B
twists).
[Witten]

We focus on non-compact toric Calabi-Yau threefolds X . They
admit a natural physical description.

Topological string captures the information of the Gromov-Witten
invariants.



Start with a toric CY X in the A model. We calculate the
topological string free energy

F top =
∞∑
g=0

g2−2g
s F top

g ,

where gs is the string coupling constant.
E.g.

F top
0 =

∑
d

Nd
0 e−d ·t ,

where t denotes the Kähler moduli and Nd
0 are the Gromov-Witten

invariants at genus 0 and degree d ∈ H2(X ,Z).

Correspondingly, the topological string partition function is

Z top = exp(F top).



F top is an asymptotic formal power series, where

F top
g ∼ (2g − 2)!.

[Drukker, Gross, Mariño, Periwal, Putrov, Shenker, · · · ]

The divergence implies that there is some non-perturbative effect
missing.

The TS/ST correspondence provides a non-perturbative completion
of F top (or Z top).



By mirror symmetry, this is equivalent to the B model on the mirror
CY X̃ of the form

W (X ,Y ,κ) = uv , X ,Y ∈ C∗, u, v ∈ C,

where W (X ,Y ,κ) is a polynomial in X ,Y ,X−1,Y−1 and the
coefficients are the complex moduli κ.

The complex moduli are mapped to Kähler moduli on the A side by
the mirror map.

X̃ can be viewed as a fibration over the (X ,Y ) plane.

We focus on the mirror curve

Σ ≡ {(X ,Y )|W (X ,Y ,κ) = 0}

characterizing the degeneration locus.



In the TS/ST correspondence, we turn on a quantization parameter

ℏ =
1
gs
.

We are interested in the quantum mirror curve arising in the Weyl
quantization of the mirror curve Σ.

We study their spectral properties, which are captured by the
spectral determinant ΞX .



Example:
▶ A side: Local P1 × P1.
▶ B side:

The mirror curve is

ey + e−y + κ1 + ξe−x + ex = 0, x , y ∈ C.

The corresponding quantum mirror curve is

(ep̂ + e−p̂ + κ1 + ξe−x̂ + ex̂)ψ(x) = 0, [x̂ , p̂] = iℏ.

Treating κ1 as the energy, its spectrum is described by the
spectral determinant:

ΞLocal P1×P1 = det
(
1 + κ1(ep̂ + e−p̂ + ξe−x̂ + ex̂)−1

)
=
∏
n≥0

(
1 +

κ1

En

)
,

where En’s are eigenvalues of ep̂ + e−p̂ + ξe−x̂ + ex̂ .



In our work, we focus on Y N,0 geometry, for N ≥ 2.

The corresponding quantum mirror curve is(
ep̂ + e−p̂+(−N+2)x̂ +

N−1∑
i=1

κN−ie(i−N+1)x̂ + ξe(−N+1)x̂ + ex̂
)
ψ(x) = 0,

where [x̂ , p̂] = iℏ. κi ’s are the complex moduli and ξ is a complex
coupling.



We can construct N − 1 non-commuting traceclass operators

Ai =
(
ep̂ + e−p̂+(−N+2)x̂ + ξe(−N+1)x̂ + ex̂

)−1
e−(i−1)x̂ ,

one for each κi .

In the spectral theory, we define the spectral determinant:

ΞX (κ, ℏ) = det(1 + κ1A1 + · · ·+ κN−1AN−1).



The TS/ST correspondence is a conjectured duality between the
topological string and the spectral theory

∑
w∈QN−1

exp (JN(t(gs) + 2πiw , ξ, gs))︸ ︷︷ ︸
topological string (A side)

= det

(
1 +

N−1∑
i=1

κiAi

)
︸ ︷︷ ︸
spectral theory (B side)

,

where QN−1 is the root lattice of AN−1.
[Codesido, Hatsuda, Grassi, Mariño, · · · ]

▶ A side: JN is determined by the topological string free energy
and its non-perturbative completion.

▶ B side: The spectral determinant encodes the spectral
information of the quantum mirror curve.



JN(t(gs), ξ, gs)

=F top (gsξ + πiN, gst(gs), gs)

+
N∑
i=1

ti (gs)

2π
∂

∂ti
FNS

5d (ξ, t(gs),
1
gs

) +
∂

∂gs

(
gsF

NS
5d (ξ, t(gs),

1
gs

)

)
.

JN contains two parts
▶ The topological string free energy: F top.
▶ The Nekrasov-Shatashvili free energy: FNS

5d .
[Grassi, Hatsuda, Mariño, Moriyama, Okuyama,· · · ]

FNS
5d (ℏ) is a special function defined in 5d, N = 1 supersymmetric

field theories.

It provides the non-perturbative effect in the TS/ST
correspondence.



On the A side, topological string geometrically engineers 5d, N = 1
supersymmetric field theory.
[Jefferson, Katz, Kim, Vafa, Klemm, · · · ]

Topological string partition functions are equivalent to the
Nekrasov partition functions ZNek

5d (ϵ1, ϵ2) at the
Gromov-Witten/Gopakumar-Vafa phase, ϵ1 = −ϵ2 = gs .

Inspired by the Nekrasov partition function, people study the
topological string theory with two parameters ϵ1 and ϵ2, known as
refined topological string theory.
[Huang, Kashani-Poor, Klemm, Kozcaz, Iqbal, Vafa, · · · ]

▶ The Gromov-Witten/Gopakumar-Vafa phase (standard
topological string): Z top(gs) = eF top(gs) = ZNek

5d (gs ,−gs).
▶ The Nekrasov-Shatashvili phase: ZNS

5d (ℏ) = ZNek
5d (ℏ, 0).



∑
w∈QN−1

exp (JN(t(gs) + 2πiw , ξ, gs))︸ ︷︷ ︸
topological string (A side)

= det

(
1 +

N−1∑
i=1

κiAi

)
︸ ︷︷ ︸
spectral theory (B side)

The parameters on the two sides can be mapped as follows:

▶ ℏ = 1
gs
.

This gives a strong-weak duality.

▶ κ is mapped to t(gs), where the map depends on gs (or ℏ).

This is the quantum version of the mirror map.



Although remained as a conjecture, the TS/ST correspondence has
been tested in many examples and applied in a lot of works.

▶ Exact quantization conditions for the relativistic integrable
systems.
[Grassi, Gu, Klemm, Hatsuda, Huang, Mariño, Franco, Sun,
Wang, Zhang, · · · ]

▶ Rigorous result for ℏ = 2π.
[Codesido, Grassi, Mariño, Kashaev, Sergeev, Kerr, Doran,
Sinha Babu, · · · ]

▶ Studies on the resurgence properties corresponding to CY
geometries also exploit the TS/ST correspondence.
[Gu, Mariño, Rella, Schiappa, · · · ]

▶ · · ·

A full proof of the TS/ST correspondence is still missing. In our
work, we take a step forward to this final goal.

In today’s talk, we prove a scaling limit of it.
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On the A side, JN contains two parts, Z top and ZNS
5d .

We are interested in the dual 4d limit where ZNS
5d vanishes.

We scale

gs = β

log ξ = − 1
β
log(β2NT )

t = 2πiσ

and send β → 0.

∑
w∈QN−1

exp (JN(t(gs) + 2πiw , ξ, gs))
dual−−−−−→

4d limit

∑
w∈QN−1

ZSD
4d (σ+w ,T )



ZSD
4d (σ,T ) remained on the A side is another special function in

physics.

It is the self-dual phase of the Nekrasov partition function for the
4d, N = 2 SU(N) SYM.

ZSD
4d (σ,T ) =

T
1
2σ

2
Z 4d

inst(σ,T )∏
α∈∆

G (1 + (α,σ))
,

where G is the Barnes function.

Z 4d
inst(σ,T ) is the 4d Nekrasov instanton partition function.

Schematically,

Z 4d
inst(σ,T ) = 1 +

∑
n≥1

cn(σ)T
n.



For N = 2,

Z 4d
inst(σ1,T )

=1 +
1

2σ2
1
T

+
8σ2

1 + 1
4σ2

1
(
1 − 4σ2

1
)

2
T 2

+
8σ4

1 − 5σ2
1 + 3

24
(
4σ5

1 − 5σ3
1 + σ1

)
2
T 3

+ · · · .

Z 4d
inst(σ1,T ) is a series with non-zero radius of convergence.

[Its, Lisovyy, Tykhyy]



On the B side, we scale

ℏ =
1
β
, log ξ = − log(β2NT )

β
,

log κj = − j

βN
log
(
β2NT

)
+ log (xj) .

Sending β → 0,

det

(
1 +

N−1∑
i=1

κiAi

)
dual−−−−→

4d limit
det

(
1 +

N−1∑
k=1

xkA
4d
k

)
,

where A4d
k ’s are traceclass operators defined by

A4d
k = e

2k−N
2N p̂f (x̂)

1

2 cosh( p̂2 )
f (x̂), k = 1, · · · ,N − 1,

where
f (x) = exp

(
−2NT

1
2N cosh(x)

)
[Bonelli, Grassi, Tanzini]



We take the dual 4d limit of the TS/ST correspondence for Y N,0

geometry.∑
w∈QN−1

exp (JN(t(gs) + 2πiw , ξ, gs)) = det

(
1 +

N−1∑
i=1

κiAi

)

∑
w∈QN−1

ZSD
4d (σ + w ,T ) = det

(
1 +

N−1∑
k=1

xkA
4d
k

)
.

[Gavrylenko, Grassi, H]



∑
w∈QN−1

Z top
4d (σ + w ,T ) = det

(
1 +

N−1∑
k=1

xkA
4d
k

)

A side depends on σi ’s while B side depends on xk ’s, they are
related by the k-th elementary symmetric function

xk =
∑

1≤i1<i2<···<ik≤N

k∏
m=1

e2πiσim , k = 1, · · · ,N − 1.



Our strategy:

We match the A side constructed from the Nekrasov partition
function with a solution, τ0, of the rank N (non-autonomous) Toda
equations. T is time in this language.
[Bershtein, Gavrylenko, Marshakov]

∂2
logT log τj = −T

1
N
τj+1τj−1

τ2
j

, τj = τN+j .

This is a generalization of the Kyiv formula. For N = 2, the Toda
system reduces to the Painléve III3.
[Gamayun, Iorgov, Lisovyy, · · · ]

In our proof, we show that the B side is the same solution to the
Toda system as the A side by converting it to a known determinant
solution and check its initial conditions.
[Tracy, Widom]



To generalize the result to the full TS/ST correspondence, we use
the (Non-autonomous) q-Toda system as a bridge connecting two
sides.

Tj(qz)Tj(
z

q
) = Tj(z)2 − z

1
N Tj+1(z)Tj−1(z) , q = eigs , z ∼ ξ−

1
ℏ .

In the limit dual 4d limit, it becomes a Toda system.

Using [Bershtein, Gavrylenko, Marshakov], we can prove the A side
satisfies this equation. But proving it for the B side is challenging.
[Gavrylenko, Grassi, H]
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(Non-autonomous) Toda equations are solved using 4d Nekrasov
partition functions.

It is a series in time (small T ) with a non-zero radius of
convergence.

The spectral determinant on the B side provides a resummation of
it.

A solution is specified by 2(N − 1) initial conditions.

The 2 sides of the dual 4d limit corresponds to a particular type of
initial conditions, where half of the initial conditions are fixed.

The remaining (N − 1) is parameterized by σ on the A side and x
on the B side.



The spectral determinants have the small energies expansion

det

(
1 +

N−1∑
k=1

xkA
4d
k

)
=

∑
M1,...,MN−1≥0

Z (M)xM1
1 · · · xMN−1

N−1 .

Z (M) can be further recasted into a matrix model

Z (M) =
1

M1! · · ·MN−1!

∫
RM

dMx

(2π)M

N−1∏
j=1

∏
rj−1≤ij≤rj

e−T
1
2N sin(πj

N )cosh(xij )

×

∏
1≤i<j≤M

2 sinh
(

xi−xj
2 + 1

2 (di − dj)
)

2 sinh
(

xi−xj
2 + 1

2 (fi − fj)
)

M∏
i,j=1

2 cosh
(

xi−xj
2 + 1

2 (di − fj)
) .

[Bonelli-Grassi-Tanzini]



The matrix model Z (M) admits a natural expansion around the
Gaussian point.

Z (M) ∼ e−T
1

2N (M,sin(πk
N
))
(
T

1
2N

)− 1
2M2

C (M) E∞(M),

where

E∞(M) = 1 +
∑
ℓ≥1

(
1

T
1

2N

)ℓ

D
(N)
ℓ (M) .

C is a product of Barnes functions and D
(N)
ℓ ’s are polynomials of

degree at most 3l in M.

This provides an expansion at large time (large T) for the solution
to the Toda system.



The large time expansion can be further analytically continued to
generic initial conditions, parametrized by x and ν:

τ∞0 (x ,ν,T )

=
∑

M∈ZN−1

(xM+νe−T
1

2N (M+ν,sin πk
N
)(T

1
2N )−

1
2 (M+ν)2

×C (M + ν)
∞∑
ℓ=0

D
(N)
ℓ (M + ν)

(T
1

2N )ℓ
) ,

[Gavrylenko, Grassi, H]



∑∞
ℓ=0

D
(N)
ℓ (M+ν)

(T
1

2N )ℓ
provides the partition function of 4d N = 2

SU(N) SYMs at strong coupling (large time).

The dual 4d limit of the TS/ST correspondence enables us to go
from the weak coupling region, where the localization technique of
Nekrasov is valid, to the strong coupling region.

It agrees with previous results at strong coupling.
[Bonelli, D’Hoker, Grassi, Klemm, Lerche, Phong, Tanzini, Theisen,
· · · ]
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▶ Provide a proof to the TS/ST correspondence.

▶ Find a combinatorial expression for the coefficients D
(N)
l

characterizing the large time expansion of the solution.
▶ Get the generic mapping between small and large time initial

conditions. Parallel to what has been done for Y 2,0, we expect
a geometrical interpretation via Fock-Goncharov and
Fenchel-Nielsen coordinates transform.
[Coman, Longhi, Teschner]

▶ Explain the relation to q-Toda equations from the 5d, N = 1
theory side. We expect it to be the tt∗ equations of a codim-2
defect.
[Bonelli, Cecotti, Gaiotto, Globlek, Moore, Neitzke, Tanzini,
Vafa]



Thank you!



The kernel of Ai can be expressed explicitly in terms of the
Faddeev’s quantum dilogarithm Φb:

Aj(p, p
′) = e−iπb2(j−1)2/N2

e−4π(j−1)bp′/Nρ1,N−2,ξ(p, p
′+ i

b(j − 1)
N

),

where b2 = Nℏ
2π and

ρ1,N−2,ξ(p, p
′) =

f5d(p)f5d(p
′)

2b cosh
(
π p−p′

b + iπ(N−2)
2N

)
where

f5d(x) =
Φb(x − 1

2πb log ξ +
ib
2N )

Φb(x − ib(N−1)
2N )

e
πb(N−1)

N
xe−

1
2N log ξ.



Z (M)’s are the fermionic spectral traces given by

Z (M) =
1

M1! · · ·MN−1!

∑
σ∈SM

(−1)σ
∫

dMx

(
M1∏
i=1

A4d
1 (xσ(i), xi )

)
M1+M2∏

i=1+M1

A4d
2 (xσ(i), xi )

 · · ·

M1+···+MN−1∏
i=1+···+MN−2

A4d
N−1(xσ(i), xi )


r0 = 1, rj =

j∑
i=1

Mi j = 1, 2, · · · .

We also define

dj = −(N − 1 − k)iπ
N

,

fj = −(N − 2)iπ
N

− dj ,

where
rk−1 ≤ j ≤ rk .
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