THE ASYMPTOTIC AND THE DESCENDANTS

OF THE 3D-INDEX
RENEW QUANTUM SEMINAR
oDENSE, 7 FEB 2023

STAVROS GAROUFALIDIS MATH INSTITUTE
SUSTECH, SHENZHEN, CHINA

References:
2209.02843 Periods, the mero 3D-index and TV-invariants
2301.00098 The descendants of the 3D-index

Contents:

- The 3d-index and the state-integral
- The 3d-index (definitions, properties)
- Descendants (algebra)
- Asymptotics (analysis)

The 3d-index and the state integral
3d-3d correspondence on one side gives an $N=2$ superconformal field theory

$$
\begin{aligned}
& T_{M}\left[S^{3}\right] \quad \text { on } S^{3}=D^{2} \times S^{1} \cup D^{2} \times S^{\prime} \quad S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \in S \mathbb{Z}_{2} \mathbb{Z} \\
& \text { or on } \\
& T_{M}\left[S^{2} \times S^{\prime}\right] \text { on } S^{2} \times S^{\prime}=D^{2} \times S^{1} \cup D^{2} \times S^{1} \quad \varepsilon=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \in G L_{2} \mathbb{Z}
\end{aligned}
$$ and more generally on

$$
T_{M}[\text { Lens space }] \quad \gamma \in S L_{2} \mathbb{Z}
$$

- Here, $M=$ triangulated 3-manifold.
- These theories ore topological, and their partition functions con be computed by cut-and-paste topology, reducing the computation to the partition function of on (ideal) tetrahedron.
- The partition function of On ideal tetrahedron satisfies
a pair of linear q-difference equations
a nonlinear pentagon identity
symmetries
that uniquely determines them, and the whole theory
- $T_{M}\left[S^{3}\right]=$ Andersen-Kashaer state integral, expressed (conjecturally) bilinearly in terms of functions of q and \bar{q} where $q=e^{2 \pi i \tau}, \tilde{q}=e^{-2 \pi i / \tau}$
- $T_{M}\left[S^{2} \times S^{\prime}\right]=D G G \cdot$ index, expressed in terms of functions of q and q^{-1}
- T_{M} [lens space] is a state-integral defined using an $S L_{2} \mathbb{Z}$-extension of the Fodder quantum dilogarithm [akz] expressed bilinearly in terms of the same functions of q and 9^{\neq}

$$
q=e^{2 \pi i \tau}, q^{\#}=e^{2 \pi i \gamma(\tau)}
$$

The DGG 3d-index
Building block: tetrahedron index

$$
I_{\Delta}(m, e)(q)=\sum_{n=(-e)_{+}}^{\infty}(-1)^{n} \frac{q^{\frac{1}{2} n(n+1)-\left(n+\frac{1}{2} e\right) m}}{(q ; q)_{n}(q ; q)_{n+e}} \in \mathbb{Z}((q))^{\prime}
$$

$(m)_{+}=\max (0, m)$. The partition function of

$$
I_{\Delta}^{r o t}\left[S^{2} \times S^{\prime}\right]
$$

$$
\operatorname{deg}\left(I_{\Delta}(m, e)(q)=\frac{1}{2}\left(m_{+}(m+e)_{+}+(-m)_{+} e_{+}+(-e)_{+}(-e-m)+\max (0, m,-e l) \geq 0\right.\right.
$$

Rotated 3d-index
τ = ideal triangulation of M (cusped 3-munt) with N tetrohedra

$$
\begin{gathered}
z^{\prime}=\frac{1}{1-z} \\
z^{\prime \prime}=1-\frac{1}{z} \\
\text { Note }\left\{\begin{array}{l}
z z^{\prime} z^{\prime \prime}=-1 \\
z^{-1}+z^{\prime \prime}=1
\end{array}\right.
\end{gathered}
$$

Gluing equations: N for edges, 2 for cusp

$$
\begin{gathered}
\sum_{j=1}^{N} G_{i j} \log z_{j}+G_{i j}^{\prime} z_{j}^{\prime}+G_{i j}^{\prime \prime} \log z_{i}^{\prime \prime}=\pi i \eta_{i} \\
\eta=\left(\begin{array}{c}
-2 \\
2 \\
0 \\
0
\end{array}\right) \in \mathbb{Z}^{N+2}
\end{gathered}
$$

Eliminate z^{\prime} using $z^{\prime}=-\frac{1}{2 z^{\prime \prime}}$

$$
\sum_{j=1}^{N} A_{i j} \log 2+B_{i j} \log z_{j}^{\prime \prime}=\pi i v_{i} \quad i=1 \ldots, N+2
$$

Let $A=\left(a_{1}|\ldots| a_{N}\right) \quad B=\left(b_{1}|\ldots| b_{N}\right)$
So $\tau \leadsto(A|B| v)$
Def $I_{\tau}^{\text {rot }}\left[S^{\prime} \times S^{2}\right]$ computed via 3d-3d correspondence, a topological theory
Def $\left.I_{\tau}^{\text {rot }}\left(n, n^{\prime}\right)(q)=\sum_{k \in \mathbb{Z}^{N}} S_{\tau}\left(k, n, n^{\prime}\right) L_{q}\right)$

$$
\begin{aligned}
& k \in \mathbb{Z}^{\prime N} \\
& S_{\tau}\left(k, n, n^{\prime}\right)(q)=\left(-q^{1 / 2)^{v \cdot k-\left(n-n^{\prime}\right) v_{\lambda}} q^{k N\left(n+n^{\prime} V_{2}\right.} .}\right. \\
& \cdot \prod_{j=1}^{N} I_{\Delta}\left(\lambda_{j}^{\prime \prime}\left(n-n^{\prime}\right)-b_{j} \cdot k_{,}-\lambda_{j}\left(n-n^{\prime}\right)+a_{j} \cdot k\right)(q)
\end{aligned}
$$

Thu [GHRS](a)If $\tau=1$-efficient (ie has no nouperipheral normal tori, and no normal S^{2}) then $I_{\tau}^{\text {rot }}\left(n, n^{\prime}\right)(q) \in \mathbb{Z}((q))$ is well-defined
(b) It is a topological invariant of cusped hyperbolic manifolds
Thu [GK] Alternative proof at topological invariance using state-integral formula $I_{\tau}^{\text {er }}$

In particular, $I_{\tau}^{\text {mar }}(0,0)(q)=\sum_{n \in \mathbb{Z}} I_{\tau}^{\text {rot }}(n, n)(q)$
Properties of 3d-index (Conjectural)
Factorization

$$
\begin{aligned}
& I_{\tau}^{\text {rot }}\left[s^{\prime} \times S^{2}\right]=\left\langle I_{\tau}^{\text {rot }}\left[S^{\prime} \times D^{2}\right], I_{\tau}^{\text {rot }}\left[S^{\prime} \times D^{2}\right]\right\rangle \\
& \left.\cdot I_{\tau}^{\text {rot }}(q)=H_{\tau} l_{q}\right) B_{\tau} H_{\tau}\left(q^{-1}\right)^{t} \\
& \mathbb{Z} \times \mathbb{Z} \quad \mathbb{Z} \times r r \times r \quad r \times \mathbb{Z} \\
& H_{\tau}(q)=\left(\begin{array}{l}
(\alpha) \\
h_{n} \\
\text { colored hole blocks }
\end{array}\right.
\end{aligned}
$$

- where $H(q)$ is a properly normalized fundamental solution of linear 9 -difference equation

$$
\begin{array}{ll}
\hat{A}_{T}\left(M_{+}, L_{+}\right) H(g)=0 & \hat{A}_{T}\left(M_{-}, L_{-}\right) H\left(g^{\prime}\right)=0 \\
M_{+} h_{n}^{(\alpha)}(q)=q^{n} h_{n}^{(\alpha)}(q) & M_{-} h_{n}^{(\alpha)}\left(q^{-1}\right)=q^{-h^{n} h_{n}^{(\alpha)}\left(q^{-1}\right)} \\
L_{+} h_{n}^{(\alpha)}(q)=h_{n+1}^{(\alpha)}(q) & L_{-} h_{n}^{(\alpha)}\left(q^{-1}\right)=h_{n+1}^{(\alpha)}\left(q^{-1}\right)
\end{array}
$$

Cor $I_{\tau}^{\text {rot }}(q)$ is uniquely determined by
(1) $r \times r$ matrix $I_{\tau}^{\text {rot }}(q)[r]$
(2) pair of linear q-difference equs

$$
I^{\text {rot }}(q)[r]=\left(I^{\text {rot }}\left(n, r^{\prime}\right)(q)_{0 \leq n, n^{\prime} \leq r-1}\right.
$$

Regularity

$$
I_{\tau}^{\text {rot }}\left(n, n^{\prime}\right)(q)=\lim _{x \rightarrow 1} \sum_{\alpha} B_{\tau}^{(\alpha)}\left(q^{-n^{\prime}} x^{-1} ; q^{-1}\right) B_{\tau}^{(\alpha)}\left(q^{n} x ; q\right)
$$ where $B^{(\alpha)}(x ; q)$ are x-deformed holoblocks

Descendants
Insertions, defects, line operators

$$
\begin{aligned}
& M=S^{3}-K \\
& L C M \\
& M(\tau)=\frac{W_{q}(\tau)}{\left(W_{q}(\tau) \cdot \text { Lagrengians }+ \text { edge equs } \cdot W_{q}(\tau)\right)} \\
& \begin{array}{l}
W_{q}(\tau)=M(T) \\
\left.\hat{z} \hat{z}^{\prime}=q \hat{z}^{\prime}\right)<\hat{z}_{j}, \hat{z}_{j}^{\prime}, \hat{z}_{j}^{\prime \prime} \mid i=1 \ldots N c l i c \text { permutations } \\
\hat{z} \hat{z}^{\prime} \hat{z}^{\prime \prime}=-q
\end{array}
\end{aligned}
$$

Def if $\theta=\prod_{j=1}^{N} \hat{z}_{j}{ }^{\alpha} \hat{z}_{j}{ }^{\prime} b_{j}$

$$
\begin{aligned}
I_{\tau,}^{r o t}\left(n, n^{\prime}\right)(q) & =\sum_{k \in \mathbb{Z}^{N}}\left(\theta_{0} S_{\tau}\right)\left(k, n, n^{\prime}\right)(q) \\
\left(\theta \circ S_{\tau}\right)\left(k, n, n^{\prime}\right)(q) & =\left(-q^{1 / 2}\right)^{v \cdot k-\left(n-n^{\prime}\right) v_{\lambda}} q^{k N}\left(n+n^{\prime} V_{2}+L_{\theta}\left(n, n^{\prime}, k_{c}\right)\right. \\
& \prod_{j=1}^{N} I_{\Delta}\left(\lambda_{j}^{\prime \prime}\left(n-n^{\prime}\right)-b_{j} \cdot k+b_{j},-\lambda_{j}\left(n-n^{\prime}\right)+a_{j} \cdot k-\alpha_{j}\right)(q)
\end{aligned}
$$

Note The insertion ε_{i} of the th edge acts as

$$
\left(\varepsilon_{:} \circ S_{T}\right)\left(k, n, n^{\prime}\right)=q S_{T}\left(k-e_{i}, n, n^{\prime}\right)
$$

hence summing over $k \in \mathbb{Z}^{N}$, if follows $\varepsilon_{i}-q$ ambulates $I_{\tau}^{\text {rot }}\left(n, n^{\prime}\right)(q)$.

Properties of descendent 3d-index (Gnjectural)
Factorization(Q) There exists $\hat{A}_{\tau, \theta}$ linear q-difference operator with fund matrix solution $H_{T, \theta}(q)$:

$$
I_{\tau, \theta}^{\text {rot }}(q)=H_{\tau, \theta}(q) B_{\tau} H_{\tau}\left(q^{-1}\right)^{t}
$$

(b) There exists $Q_{\tau, \theta}(q) \in M_{r}\left(\mathbb{Q}\left(q^{1 / 2}\right)\right)$:

$$
I_{\tau, \theta}^{\text {rot }}[r]=Q_{\tau, \theta}(q) I_{\tau}^{\text {rot }}[r]
$$

Cor $I_{\tau, \theta}^{\text {rot }}(q)$ is uniquely determined by
(a) $r \times r$ matrices $I_{\tau}^{r o t}(q)[r]$ and $Q(q)$
(a) and (vacuum)
(b) pair of linear 9 -difference equs

$$
\hat{A}_{\tau} \text { and } \hat{A}_{\tau, \theta} .
$$

Def Let $D I_{\tau, \theta}^{\text {rot }}=\operatorname{Span}_{\left(Q\left(q^{\prime \prime 2}\right)\right.}\left\{I_{\tau, 0}^{\text {rot }}\left(n, n^{\prime}\right)(q) \mid n, n^{\prime} \in \mathbb{Z}\right\}$ (a fin. dimensional $Q\left(q^{1 / 2}\right)$-vat space)
Cor $u_{\theta \in \mu(\tau)} D I_{\tau, \theta}^{\text {rot }}=D I_{\tau}^{\text {rot }}$.
In other words, the descendants of the rotated $3 d$ index are expressed effectively by a finite size matrix over $\mathbb{Q}\left(q^{1 / 2}\right)$.
Conjecture $\left.\hat{A}_{\tau, \theta}(M, L, q)\right|_{q=1} \doteq_{M} \hat{A}_{\tau}(M, L)$

Examples
4, knot

$$
\begin{aligned}
G & =\left(\begin{array}{ll}
2 & 2 \\
0 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right) \quad G^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & -1
\end{array}\right) \quad G^{\prime \prime}=\left(\begin{array}{cc}
0 & 0 \\
2 & 2 \\
0 & -1 \\
1 & -3
\end{array}\right) \\
A & =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \quad B=\left(\begin{array}{cc}
-1 & -1 \\
0 & -1
\end{array}\right) \quad v=\binom{0}{0} \\
I_{4_{1}}^{\text {rot }}\left(n, n^{\prime}\right)(q) & =\sum_{k_{1}, k_{2} \in \mathbb{Z}} q^{k_{2}\left(n+n^{\prime}\right)} I_{\Delta}\left(k_{1}, k_{1}+k_{2} \mid(q)\left[\left(k_{\Delta}+k_{2}-n+n^{\prime}, k_{1}-n+n^{\prime}\right)(q)\right.\right.
\end{aligned}
$$

Factorization

$$
\begin{aligned}
& I^{\text {rot }}\left(n, n^{\prime}\right)(q)=-\frac{1}{2} h_{n^{\prime}}^{(1)}\left(q^{\prime}\right) h^{(0)}(q)+\frac{1}{2} h_{n}^{(0)}\left(q^{-1}\right) h_{n^{\prime}}^{(1)}(q) \\
& h_{n}^{(0)}(q)=(-1)^{n} q^{\ln (2|n|+1) / 2} \sum_{k=0}^{\infty}(-1)^{k} \frac{q^{k(k+1) / 2+\ln) k}}{(q ; q)_{k}(q ; q)_{k+2 \mid n)}} \\
& h_{n}^{(1)}(q)=\text { similar, a bit } \\
& \text { more complicated }
\end{aligned}
$$

Satisfy linear q-difference eq n $(n \in \mathbb{Z}, \alpha=0,1)$:

$$
q^{2+2 n}\left(q^{3+2 n}-1\right) h_{n}^{(\alpha)}(q)+\ldots+q^{3+2 n}\left(q^{1+2 n}-1\right) h_{n+2}^{(\alpha)}(q)=0
$$

Defects $\theta=-\hat{z}_{1}^{-1}-\hat{z}_{2}^{-1}+z_{1}^{-1} \hat{z}_{2}^{-1} \in \mu(\tau)$
Computing the matrices $I^{\text {rot }}\left(n, n^{\prime}\right)(q)$ and $I_{\hat{\theta}}^{\text {rot }^{\prime}}\left(n, n^{\prime}\right)(q)$ for $n, n^{\prime}=0,1$ we find out

$$
I^{\text {rot }}\left(n, n^{\prime}\right)(q)[2]=\left(\begin{array}{ll}
1-8 q-9 q^{2}+18 q^{3}+46 q^{4}+90 q^{5}+\ldots & -q^{\frac{1}{2}}+q^{\frac{1}{2}}-q^{\frac{1}{2}}+6 q^{\frac{5}{2}}+20 q^{\frac{7}{2}}+\ldots \\
-q^{-\frac{1}{2}}+q^{\frac{1}{2}}-q^{\frac{7}{2}}+6 q^{\frac{5}{2}}+20 q^{\frac{7}{2}}+\ldots & 2 q+2 q^{2}+7 q^{3}+8 q^{4}+3 q^{5}-2 q^{6}+\ldots
\end{array}\right)
$$

and likewise

$$
I_{\hat{\theta}}^{\text {rot }}\left(n, n^{\prime}\right)(q)[2]=\left(\begin{array}{ll}
-3+15 q+24 q^{2}-15 q^{3}-6 q q^{4}+\ldots & 2 q^{-\frac{1}{2}}-q^{\frac{1}{2}}+4 q^{\frac{3}{2}}-7 q^{\frac{5}{2}}-34 q^{\frac{7}{2}}+\cdots \\
q^{\frac{3}{2}}-q^{\frac{1}{2}}-q^{\frac{1}{2}}+q^{\frac{3}{2}}-5 q^{\frac{5}{2}}+\ldots & -1-2 q-4 q^{-}-9 q^{3}-17 q^{4}-13 q^{5}+\cdots
\end{array}\right)
$$

Satisfy

$$
I_{\hat{\theta}}^{r_{0} t}\left(n, n^{\prime}\right)(q)[2]=\frac{1}{1-q}\left(\begin{array}{cc}
q-2 & q^{\frac{1}{2}} \\
-q^{\frac{1}{2}} & q+1-q^{-1}
\end{array}\right) \quad I^{\text {rot }}\left(n, n^{\prime}\right)(q)[2]+O\left(q^{\mid 21}\right)
$$

illustrating the dramatic cancellation of the sum of products of q-series into a short rat function.

In particular

$$
I_{\hat{\theta}}^{\text {rot }}(0,0)(q)=\frac{1}{1-q}\left((q-2) I^{\text {rot }}(0,0)(q)+q^{\frac{1}{2}} I^{\text {rot }}(0,1)(q)\right)
$$

This was repeated for 5_{2} knot $(r=3,3$ tetrahedral and even more impressively for the $(-2,3,7)$ pretzel knot

$$
(r=6,3 \text { tetrahedral) }
$$

where $I^{\text {rot }}(g)[6]$ has 20 digits integer coefficients for the celt of g^{160}, and so did $I^{\text {rot }}(q)[6]$, however their ratio is a short rational function with coefficients integers between $-5,5$.

Asymptotics

The story begins in 2011 on a train to Bonn with Don Cagier after a conference in the Diablerets

$$
\begin{aligned}
g(q)= & \sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n(n+1)}}{(q ; q)_{n}^{2}} \\
& =1-q-2 q^{2}-2 q^{3}-2 q^{4}+q^{6}+\cdots \\
& (q ; q)_{n}=(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)
\end{aligned}
$$

Incidentally $g(q)=I_{\Delta}(0,0)(q)$ but I_{Δ} was introduced a sew years later.

Radial asymptotics $q=e^{2 \pi i \tau}=e(\tau), \quad e(x)=e^{2 \pi i x}$

- $\tau \downarrow 0$ vertically

$$
g\left(e^{-\frac{2 n}{N}}\right) \sim \frac{1}{\sqrt{N}} \frac{\sqrt{2}}{\sqrt[4]{3}}\left(\cos \frac{v_{0} l}{2 n} N+\sin \frac{v_{0} l}{2 n} N\right)\left(1-\frac{11}{72 \sqrt{3}} \frac{2 n}{N}+\frac{697}{2(72 \sqrt{3})^{2}}\left(\frac{2 n}{2 n}\right)^{2}+\cdots\right)
$$

First the period $\frac{\text { vol }}{2 \pi} \sim 0.32$ of the oscillation was guessed, then ${ }^{2 \pi} 697$ was found by search in files regarding the volume conjecture of the $4, \mathrm{knot}$.

$$
\operatorname{vol}=\operatorname{vol}\left(4_{1}\right)=2 \operatorname{Imh} i_{2}\left(e\left(\frac{1}{6}\right)\right)
$$

Thus

$$
g(e(\tau)) \sim J_{8} \sqrt{\tau}\left(\begin{array}{c}
\hat{\phi}(2 n i \tau)-i \hat{\phi}(-2 n i \tau)) \\
i v \operatorname{vol}(4))
\end{array}\right.
$$

where $\phi(h)=e^{\frac{\text { vol }(4)}{h}} O(h)$

$$
\phi(h)=\frac{1}{\sqrt[4]{-3}}\left(1-\frac{11}{72 \sqrt{-3}} h+\frac{697}{2(72 \sqrt{-3})^{2}} h^{2}+\frac{724351}{30(72 \sqrt{-3})^{3}} h^{3}+\cdots\right)
$$

satisfies

$$
\left\langle 4_{1}\right\rangle_{N} \sim N^{3 / 2} \hat{\phi}\left(\frac{2 n i}{N}\right)
$$

$\left\langle U_{1}\right\rangle_{N}=$ Kasher invariant of U_{1}

- $t \rightarrow 0$ horizontally $0<\arg \tau<\varepsilon$ fixed

Here $\hat{\phi}(2 \pi i \tau)$ is exponentially bigger than $\hat{\phi}(-2 n i \tau)$
but now \tilde{q} corrections are visible, $\tilde{q}=e^{-2 \pi i / \tau}$ and in fact

$$
g(e(\tau)) \sim J_{8} \sqrt{\tau} g\left(e\left(-\frac{1}{\tau}\right)\right) \hat{\phi}(2 n i \tau)
$$

Actually this reeds to be interpreted eg via median Borel summation. In this case $\hat{\Phi}(-2 \pi i \tau) h(e(-1 / \tau))$ also contributes and then have identity.
Conclusion Radial asymptotics of 9 -hypergeometric series at $q \rightarrow$ root of unity depends on sectors.

Fast forward to last year.

$$
I_{\tau}^{\operatorname{mer}}(0,0)(q)=\sum_{n \in \mathbb{Z}} I_{\tau}^{\text {rot }}(n, n)(q)
$$

(the relation between the $[G K]$ 3d-index and the rotated 3d-index)

$$
I_{4_{1}}^{\text {mar }}(0,0)(q)=1-4 q-q^{2}+36 q^{3}+70 q^{4}+100 q^{5}+34 q^{6}-116 q^{7}+\ldots
$$

when $q=e(\tau), \tau \rightarrow 0$ nearly horizontally we found that

$$
\begin{aligned}
& I_{4_{1}}^{\text {mar }}(0,0)(q) \sim e^{\frac{2 \text { vol }}{2 \pi \tau}} \frac{1}{3^{3 / 4} 2^{1 / 2} \sqrt{\tau}} \\
& \quad \times\left(1-\frac{19}{24 \sqrt{-3}^{3}} 2 \pi i \tau+\frac{1333}{1152 \sqrt{-3}^{6}}(2 \pi i \tau)^{2}-\frac{1601717}{414720 \sqrt{-3}^{9}}(2 n i \tau)^{3}+\ldots\right)
\end{aligned}
$$

Then, we recognized the number 1333 appearing in the asymptotics of the $T V$ invariant $T V_{4, m+\frac{1}{2}}$ replacing $m+\frac{1}{2}$ by T. Then we checked 7 more coefficients.
Def $T V_{K, m+\frac{1}{2}}=\left.* \sum_{k=1}^{m}[k]^{2}\left|J_{K, k}(q)\right|^{2}\right|_{q=e\left(\frac{1}{m+\frac{1}{2}}\right)}$
Chen-Yuny conjectured that $T V_{k}$ grows exponentially capturing the volume of a hyperbolic knot.

Conjecture [GW] $\tau \rightarrow 0$ nearly horizontally

$$
\begin{aligned}
& I_{k}^{\operatorname{mer}}(0,0)(e(\tau)) \sim \sum_{n \in \mathbb{Z}} \hat{\phi}_{k, n}^{\left(\sigma_{1}\right)}(2 n i \tau) \hat{\phi}_{k, n}^{\left(\sigma_{2}\right)}(-2 \pi i \tau) \\
& T V_{K, m+\frac{1}{2}} \sim \sum_{n \in \mathbb{Z}} \hat{\phi}_{k, n}^{\left(\sigma_{1}\right)}\left(\frac{2 n i}{m+\frac{i}{2}}\right) \hat{\phi}_{k, n}^{\left(\sigma_{2}\right)}\left(-\frac{2 n i}{m+\frac{1}{2}}\right) \\
& I_{k}^{r o t}\left(n, n^{\prime}\right)(e(\tau)) \sim \hat{\phi}_{k, n}^{\left(\sigma_{1}\right)}(2 n i \tau) \hat{\phi}_{k, n^{\prime}}^{\left(\sigma_{2}\right)}(-2 \pi i \tau)
\end{aligned}
$$

where $\hat{\phi}_{n}^{(\sigma)}(h)=e^{\frac{V_{\sigma}}{h}} \phi_{n}^{(\sigma)}(h)$

$$
\phi_{n}^{(\sigma)}(h)=\frac{1}{\sqrt{\delta_{\sigma}}}\left(1+F_{\sigma}[[n, h]]\right)
$$

$\sigma=\sigma_{1}=$ geometric representation
$\sigma=\sigma_{2}=$ complex Gujugate
and $\left(\hat{\phi}_{n}^{(\sigma)}(h)\right)$ is a fundamental solution to the \hat{A}-eqn annihilating $I^{\text {rot }}(q)$. $\hat{\phi}_{n}^{(\sigma)}(h)$ can be computed (once \hat{A} is known) by $W K B$.
This conjectured was confirmed for 41 and 52 in [GW].

Vertical asymptotics
Conjecture $[G W]$ when $\tau \downarrow 0$ vertically
where $\varepsilon_{\sigma}= \begin{cases}-1 & \text { if } \delta_{\sigma}<0 \\ 1 & \text { other }\end{cases}$
Note that after cancelling the exponential factors, the constant terms of the power series are positive numbers. The asymptotic series are O ($\left.\tau^{\text {poly }}\right)$ perhaps a consequence of unitority.
Now vertical asymptotics $I_{4,}^{\text {mar }}(0,0)(q)$
Numerically, we found out that

$$
\begin{aligned}
& I_{41}^{\text {mar }}(0,0)(q) \sim e^{\frac{2 v a l}{2 \pi \tau}} \frac{1}{3^{3 / 4} 2^{1 / 2} \sqrt{\tau}} \\
& \times\left(1-\frac{19}{24 \sqrt{-3}^{3}} 2 \pi i \tau+\frac{1333}{1152 \sqrt{-3}} 6(2 \pi i \tau)^{2}-\frac{1601717}{414720 \sqrt{-3}^{9}}(2 n i \tau)^{3}+\ldots\right) \\
& \quad-i \times(\text { replace } \tau \text { by }-\tau \text { in } \uparrow) \\
& \quad+k_{4} \frac{i}{\tau}+k_{4}^{\prime} \text { i } i \tau+\ldots
\end{aligned}
$$

where $K_{Y_{1}}=0.4458257949935614977$
From previous experience we tried to recognize this as an all number and n but failed.
Chen Compel suggested to look for periods
of A-poly curve

$$
y=x^{-2}-2 x^{-1}-1-2 x+x^{2} \quad \text { (elliptic curve) }
$$

and much to our surprise

$$
\begin{gathered}
k_{u_{1}}=\frac{\theta_{u_{1}}+\bar{\sigma}_{u_{1}}}{2 \pi} \\
\omega_{4_{1}}=\int_{\mathbb{R}} \frac{d u}{\sqrt{e^{-2 u}-2 e^{-u}-1-2 e^{u}+e^{2 u}}}
\end{gathered}
$$

(period of differential of se oud kindl.
Likewise ${q_{u_{1}}^{\prime}}_{\prime}=0.10059754907380012789$
was also recognized as

$$
\begin{gathered}
\alpha_{u_{1}}^{\prime}=2 \pi\left(\dot{\omega}_{4_{1}}^{\prime}+{\overline{\Phi_{41}^{\prime}}}_{\prime}\right) \\
\sigma_{u_{1}}^{\prime}=\int \frac{e^{-3 u}-e^{-2 u}-2 e^{-u}+5-2 e^{-u}-e^{-2 u}+e^{3 u}}{\left(\left(e^{-2 u}-2 e^{-u}-1-2 e^{4}+e^{2 u}\right)^{7 / 2}\right.} d u
\end{gathered}
$$

Moreover, next 10 coelt are Q-lin.combs of θ_{4}, and $\theta_{4_{1}}^{\prime}$.

This success won repeated for the I_{2} knot where A-poly is the curve

$$
y^{2}=(1-y)(1-x y)\left(1-\frac{y}{x}\right) \quad \text { (also elliptic). }
$$

Periods are Mellin-Barnes integrals
The $[G K]$

$$
\frac{1}{2 \pi i} \int_{\varepsilon-i \mathbb{R}} \frac{B(z, z)^{2}}{(\cos \pi z)^{2}} d z=2 \int_{-\infty}^{1} \frac{d x}{\sqrt{(1-x)\left(1-x+4 x^{2}\right)}}=5.60241216
$$

where

$$
B(x, y)=\frac{\Gamma(x) r(y)}{\Gamma(x+y)}=\int_{0}^{1} t^{x}(1-t)^{y} \frac{d t}{t(1-t)}
$$

is the Euler B-hunction.

