THE ASYMPTOTICS AND THE DESCENDANTS OF THE 3D-INDEX

RENEW QUANTUM SEMINAR

ØDENSE, 7 FEB 2023

STAVROS GAROUFALIDIS MATH INSTITUTE SUSTECH, SHENZHEN, CHINA

References:

2209.02843 Periods, the mero 3D-index and TV-invariants 2301.00098 The descendants of the 3D-index

Contents:

- The 3d-index and the state-integral • The 3d-index (definitions, properties)
- · Descendants (algebra)
- · Asymptotics (analysis)

The 3d-index and the state integral 3d-3d correspondence on one side gives an N=2 superconformal field theory. $T_{M}[S^{3}]$ on $S^{3}=D^{2}xS'\cup D^{2}xS'$ $S=\binom{D-1}{1}eSLZ$ or on $T_{M}[s^{2}xs']$ on $s^{2}xs' = D^{2}xs' \cup D^{2}xs' \in [(::,)eal_{2}Z]$ and more generally on ye SL2Z TM[Lens space] Λ

•
$$T_{M}[S^{3}] = Andersen-Kashaev stateintegral, expressed(conjecturely)bilinearly in terms of functions of q and \tilde{q}
where $q = e^{2\pi i \tau}$, $\tilde{q} = e^{-2\pi i / \tau}$$$

•
$$T_{M}$$
 [lens space] is a state-integral
defined using an SL_{Z} extension of
the Faddeev quantum dilogarithm [GKZ]
expressed bilinearly in terms of the
same functions of q and q^{H}
 $q=e^{2\pi i \tau}$, $q^{H}=e^{2\pi i g(\tau)}$,

The DGG 3d-index

Building block: fetrahedron index

$$I_{\Delta}(m,e)(q) = \sum_{n=te}^{\infty} (-1)^{n} \frac{q^{\frac{1}{2}n(n+1)-(n+\frac{1}{2}e)m}}{(q;q)n(q;q)_{n+e}} \in \mathbb{Z}(q)|^{n}$$

$$(m)_{t} = \max\{0, m\}. \quad The partition function of I_{\Delta}^{rot}[s^{2}xs']$$

$$deg(I_{\Delta}(m,e)(q) = \frac{1}{2}(m_{t}(m+e)_{t}+(-m)_{t}e_{t}+(-e)_{t}(-e-m)_{t}+\max\{0,m,-e]) \ge 0$$

Eliminate z' using
$$z'=-\frac{1}{zz''}$$

$$\sum_{j=1}^{N} A_{ij} \log_{2} + B_{ij} \log_{2} j''= \pi i B_{i} \quad i=1...,N+2$$
Let $A = (a_{1}|...|a_{N}) \quad B_{\pi}(b_{1}|...|b_{N})$
So $T \longrightarrow (A|B|U)$
Def $I_{\tau}^{rot}[s' \times s^{2}] \quad computed via 3J-3d \quad correspondence, a$
Def $I_{\tau}^{rot}(n,n')(q) = \sum_{T} (k,n,n')(q)$
 $k \in \mathbb{Z}^{N}$
 $S(k,n,n')(q) = (-q'/L)^{V,k-(n-n')V_{\lambda}} g_{N}(n+n')V_{\lambda}$
 $\cdots \prod_{j=1}^{N} I_{\lambda}(\lambda_{j}^{"}(n-n')-b_{j}\cdot k, -\lambda_{j}\cdot (n-n')+a_{j}\cdot k)(q)$
 $Thm [GHRS](Allf T=1-elhicient (ie has no nonperipheral Normal tori, and no normal s^{-1}) then
 $I_{\tau}^{rot}(n,n')(q) \in \mathbb{Z}(l(q))$ is well-defined
(b) It is a topological invariant of cusped hyperbolic manifolds
 $Thm [GK]$ Alternative proof of topological invariance Using state-integral formula $I_{\tau}^{rot}$$

In pathicular,
$$I_{T}^{mer}(0,0)[q] = \sum_{r \in \mathbb{Z}} I_{T}^{rot}(n,n)[q]$$

Properties of 3d-index (Conjectural)
Factorization
 $I_{T}^{rot}[s' \times s^{2}] = \langle I_{T}^{rot}[s' \times D^{2}], I_{T}^{rot}[s' \times D^{2}] \rangle$
 $I_{T}^{rot}[q] = H_{T}(q)B_{T}H_{T}(q^{-1})^{T}$
 $\mathbb{Z} \times \mathbb{Z}$ $\mathbb{Z} \times r \times r \times r \times \mathbb{Z}$
 $H_{T}(q) = (h_{T}^{(\alpha)}(q))$ $\alpha = 1 - r, n \in \mathbb{Z}$
 $\int_{T} \log e H(q)$ is a properly normalized
hundamental solution of liveor q-difference
 $equation$

$$\frac{\operatorname{Regularity}}{\operatorname{I}_{\tau}^{rot}(n,n')(q)} = \lim_{x \to 1} \sum_{\alpha} B_{\tau}^{(\alpha')}(q^{n'}x^{-'};q^{-'}) B_{\tau}^{(\alpha')}(q^{n}x;q)$$
where $B_{\tau}^{(\alpha)}(x;q)$ are x-deformed holo blocks

Descendants
Insertions, defects, line operators

$$M = S^{2} - K$$
 \longrightarrow $O \in M(T)$
LCM
 $M(T) = \frac{W_{q}(T)}{(W_{q}(T) \cdot \text{Lagrangians} + \text{edge eqns} \cdot W_{q}(T))}$
 $W_{q}(T) = \mathcal{Q}(q) < \hat{z}_{j}, \hat{z}'_{j}, \hat{z}'_{j}, \hat{z}''_{j} | i=1...N > = q - Weyl algebra.$
 $\hat{z} \hat{z}' = q \hat{z}' \hat{z} + \text{cyclic permutations}$
 $\hat{z} \hat{z}' \hat{z}'' = -q$

$$\begin{split} \underbrace{\operatorname{Vel}}_{t,0} & \text{ If } 0 = \prod_{j=1}^{n} \hat{z}_{j}^{\alpha_{j}} \hat{z}_{j}^{\gamma_{j}} \hat{b}_{j} \\ & \operatorname{I}_{t,0}^{rot}(n,n!(q)) = \sum_{k \in \mathbb{Z}^{N}} (0 \circ S_{t})(k,n,n!(q)) \\ & \operatorname{Vel}_{t,0}(n,n!(q)) = (-q^{1/2})^{\nu_{k}} \cdot (n-n!)^{\nu_{k}} q^{k_{k}}(n+n!)^{k_{k}} + L_{0}(n,n!(k)) \\ & \cdot \prod_{j=1}^{n} I_{k}(A_{j}^{\gamma_{k}}(n-n!) - b_{j} \cdot k \cdot b_{j}; -\lambda_{j}(n-n!) + a_{j} \cdot k - \alpha_{j})(q) \\ & \underbrace{\operatorname{Node}}_{j=1} The inservion \mathcal{E}_{i} of the ith edge acts as \\ & (\mathcal{E}_{i} \circ S_{T})(k,n,n') = qS_{T}(k-e_{i},n,n') \\ & \operatorname{hence}_{inviniting} \text{ over } ke\mathbb{Z}^{N}, \text{ if follows } \mathcal{E}_{i}:-q \\ & annihilates I^{ret}(n,n')(q). \\ & \underbrace{\operatorname{Properties}_{i \in S} of descendent 3d-index(Conjecture)}_{T,0}(a) = I_{T,0}^{rot}(a) = H_{T,0}(a)B_{T}H_{T}(a^{-1})^{t} \\ & (b) There exists Q_{T,0}(a) = M_{T}(a^{-1})^{t} \\ & (b) There exists Q_{T,0}(a) = M_{T}(a^{-1})^{t} \\ & I_{T,0}^{rot}(r^{-1}) = Q_{T,0}(a) I_{T}^{ret}[r^{-1}] \\ & \operatorname{Cor}_{T,0}(a) = i \text{ uniquely determined by} \\ \end{aligned}$$

.

(a) rxr matrices
$$I_{\tau}^{rot}(q)[r]$$
 and $Q_{\tau}(q)$
and $(vacum)$ $\tau,0$
(b) peir of linear q-difference eqns
 \hat{A}_{τ} and $\hat{A}_{\tau,0}$.
Def let $DI_{\tau,0}^{rot} = \text{Span} \left\{ I_{\tau,0}^{rot}(n,n')(q) \right\} n,n' \in \mathbb{Z} \right\}$
 $(a \text{ hin. dimensional } O(q^{v_1}) - vct \text{ space})$
 $(a \text{ hin. dimensional } O(q^{v_1}) - vct \text{ space})$
 Cor U $DI_{\tau,0}^{rot} = DI_{\tau}^{rot}$
 $O \in \mathcal{U}(\tau)$ $T, 0$ T .
In other words, the descendants of the rotated
 $T + index$ are expressed effectively by a finite
size matrix over $O(q^{v_1})$.
 $Conjective = \hat{A}_{\tau,0}(M,L,q) = \hat{A}_{\tau}(M,L)$

Examples
4. knot

$$G_{1} = \begin{pmatrix} 2 & 2 \\ 0 & 0 \\ 1 & 1 \end{pmatrix} G_{1}' = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix} G_{1}' = \begin{pmatrix} 0 & 0 \\ 2 & 2 \\ 0 & -1 \\ 1 & -3 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} B = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} V = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$I_{U_{1}}^{vot}(n, n')(q) = \sum_{k_{A}} q^{k_{A}} \begin{pmatrix} n+n' \\ 2 \end{pmatrix} I_{k_{A}}(k_{A}, k_{A} + k_{A})(q) I_{A}(k_{A} - n+n', k_{A} - n+n')(q)$$

$$k_{A}, k_{A} \in \mathbb{Z}$$

$$\frac{Factorization}{I^{rot}(n,n')(q) = -\frac{1}{2}h_{n'}^{(1)}(q^{-1})h_{n'}^{(0)}(q) + \frac{1}{2}h_{n'}^{(0)}(q^{-1})h_{n'}^{(1)}(q)}{h_{n'}(q)}$$

$$h_{n}^{(0)}(q) = (-1)^{n}q^{\ln|(2|n|+1)/2} \sum_{k=0}^{2} (-1)^{k} \frac{q^{k(k+1)/2} + \ln|k}{(q;q)_{k}(q;q)_{k+2|n|}}$$

$$h_{n}^{(1)}(q) = sim:|ar, a bit$$

$$more \ Gunplicated$$

$$satisfy \ linear \ q-dilference \ eqn \ (neZ, \alpha=0,1):$$

$$q^{2+2n}(q^{3+2n}-1)h_{n'}^{(\alpha)}(q) + ... + q^{3+2n}(q^{1+2n}-1)h_{n+2}^{(\alpha)}(q) = 0$$

$$\int \alpha ti f y$$

$$I_{\hat{Q}}^{rot}(n,n')(q)[2] = \frac{1}{1-q} \begin{pmatrix} q-2 & q^{\frac{1}{2}} \\ -q^{\frac{1}{2}} & q+1-q^{\frac{1}{2}} \end{pmatrix} \quad I^{rot}(n,n')(q)[2] + O(q^{121})$$

illerstrating the dramatic cancellation of the
Sum of products of q-series into a short rat hunchon.

In particular

$$I_{\hat{0}}^{rot}(0,0)(q) = \frac{1}{1-q} ((q-2) I^{rot}(0,0)(q) + q^{\frac{1}{2}} I^{rot}(0,1)(q)) . \square$$

This was repeated for
$$5_2$$
 knot $(r=3, 3 \text{ tetrahedra})$
and even more impressively for the $(-2,3,7)$
preted knot $(r=6, 3 \text{ tetrahedra})$

where I^{rot}(q)[6] has 20 digits integer Coefficients for the coeff of q 160, and so did I^{rot}(q)[6], however their ratio is a short rational function with coefficients integers between -5,5.

Asymptotics

The story begins in 2011 on a train to Bonn with Don Zagier after a Gnference in the Diablerets

$$g(q) = \sum_{n=0}^{\infty} (-1)^n \frac{q^n \frac{n(n+1)}{2}}{(q;q)_n^2} = 1 - q - 2q^2 - 2q^3 - 2q^4 + q^6 + \dots$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$(q;q)_n = (1 - q)(1 - q^2) \dots (1 - q^n)$$

$$g(e^{\frac{2\pi}{N}}) \sim \frac{1}{\sqrt{N}} \frac{\sqrt{2}}{\sqrt{3}} \left(\cos \frac{v_{ol}}{2\pi} N + \sin \frac{v_{ol}}{2\pi} N \right) \left(1 - \frac{11}{72\sqrt{3}} \frac{2\pi}{N} + \frac{697}{2(7273)^4} \left(\frac{2\pi}{N} \right)^{4} \right)$$

First the period $\frac{v_{ol}}{2\pi} \sim 0.32$ of the oscillation
was guessed, then 697 was found by search in
files regarding the volume Gnjecture of the 4, knot.
 $v_{ol} = v_{ol}(4_1) = 2 \operatorname{Imbig}(e(\frac{1}{6}))$

Thus

$$g(ett) \sim J_{e} \sqrt{\tau} \left(\hat{\Phi}(2n;\tau) - i \hat{\Phi}(-2n;\tau) \right)$$
where $\hat{\Phi}(h) = e^{\frac{i \sqrt{n} (l+1)}{h}} O(h)$

$$\Phi(h) = \frac{1}{\sqrt{\tau_{s}}} \left(1 - \frac{1!}{72\sqrt{\tau_{3}}} h + \frac{697}{2(72\sqrt{\tau_{3}})^{s}} h^{2} + \frac{724351}{30(72\sqrt{\tau_{3}})^{s}} h^{s} + \dots \right)$$
satisfies

$$< 4_{1} \sum_{N} \sim N^{3/2} \hat{\Phi}\left(\frac{2ni}{N}\right)$$

$$< 4_{1} \sum_{N} = Kash aev invariant of 4_{1}$$

$$\cdot \tau \rightarrow 0 \quad \text{horizontally ocarg } \tau < \epsilon \quad \text{fixed}$$
Here $\hat{\Phi}(2n;\tau)$ is exponentially bigger than $\hat{\Phi}(-2n;\tau)$
but now \tilde{q} corrections are visible, $\tilde{q} = e^{-2ni/\tau}$
and in fact

$$g(e(\tau)) \sim J_{s} \sqrt{\tau} g(e(-\frac{1}{\tau})) \hat{\Phi}(2n;\tau)$$
Actually this needs to be interpreted
eq via median Borel sourmation. In this
Case $\hat{\Phi}(-2n;\tau) \ k(e(-\sqrt{\tau})) \ also \ contributes \ and$
then have identity.
Conclusion Radial asymptotics of q -hypergeometric
Series at q -wood of unity depends on sectors.

Fast forward to last year.

 $I_{\tau}^{\text{mer}}(0,0)(q) = \sum_{\tau} I_{\tau}^{\text{ret}}(n,n)(q)$ (the relation between the [GK] 3d-index and the rotated 3d-index? $I_{4_{1}}^{mer}(0,0)(q) = 1 - 4q - q^{2} + 36q^{3} + 70q^{4} + 100q^{5} + 34q^{6} - 116q^{7} + \cdots$ when q=e(t), t ->0 nearly horizontally we found that $I_{u_1}^{mer}(o, o)(q) \sim e^{\frac{2 vol}{2 n \tau}} \frac{1}{2^{3} 4 2^{1/2} \sqrt{\tau}}$ $\times \left(1 - \frac{19}{94\sqrt{23}} 2\pi i \tau + \frac{1333}{1152\sqrt{23}} (2\pi i \tau)^2 - \frac{1601717}{11020\sqrt{23}} (2\pi i \tau)^3 + \frac{1333}{1152\sqrt{23}} \right)$ Then, we recognized the number 1333 appearing in the asymptotics of the TV invariant TV4, m+ replacing m+ 2 by T. Then we checked 7 more coefficients. $\frac{\text{Def } TV}{K, m+\frac{1}{2}} = * \sum_{k=1}^{\infty} \left[k J^2 \left| J_{K, k}(q) \right|^2 \right|_{q=e(\frac{1}{m+1})}$ Chen-Yang conjectived that TV grows exponentially Capturing the volume of a hyperbolic knot.

$$\frac{Conjecture}{k} [GW] \quad \tau \rightarrow 0 \text{ rearly harizontally} \\ \frac{T^{mer}_{k}(0,0)(e(\tau))}{k} \approx \sum_{k \in \mathbb{Z}} \widehat{\Phi}_{k,n}^{(\sigma_{1})}(2ni\tau) \widehat{\Phi}_{k,n}^{(\sigma_{n})}(-2\pii\tau) \\ \frac{TV_{k,n+\frac{1}{2}}}{k} \approx \sum_{k \in \mathbb{Z}} \widehat{\Phi}_{k,n}^{(\sigma_{1})}\left(\frac{2ni}{m+\frac{1}{2}}\right) \widehat{\Phi}_{k,n}^{(\sigma_{n})}\left(-\frac{2\pii}{m+\frac{1}{2}}\right) \\ \frac{T^{rot}_{k}(n,n')(e(\tau))}{k} \approx \widehat{\Phi}_{k,n}^{(\sigma_{1})}(2ni\tau) \widehat{\Phi}_{k,n}^{(\sigma_{n})}(-2\pii\tau) \\ \frac{T^{rot}_{k}(n,n')(e(\tau))}{k} \approx \widehat{\Phi}_{k,n}^{(\sigma_{1})}(2ni\tau) \widehat{\Phi}_{k,n'}^{(\sigma_{n})}(-2\pii\tau)$$

where
$$\hat{\Phi}_{n}^{(0)}(h) = e^{V_{T}} \Phi_{n}^{(r)}(h)$$

 $\Phi_{n}^{(0)}(h) = \frac{1}{V_{ST}} (1 + F_{T}[n,h])$
 $\sigma = \sigma_{1} = \text{geometric representation}$
 $\sigma = \sigma_{2} = \text{Guplex Gujugate}$
and $(\hat{\Phi}_{n}^{(0)}(h))$ is a fundamental solution
to the \hat{A} -eqn annihilating $I^{rot}(q)$.
 $\hat{\Phi}_{n}^{(0)}(h)$ can be computed (once \hat{A} is known)
by WKB.
This Gnjechred was Gnhimed for 4, and 52
in [GW].

Vertical asymptotics
Conjecture [GW] When two vertically
Irot (n,n') (e(t)) ~
$$\sum \varepsilon_0 \hat{\Phi}_{n}^{(\sigma)}(2nit) \hat{\Phi}_{n'}^{(G)}(-2nit)$$

where $\varepsilon_0 = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$
Note that after cancelling the exponential
lactors, the Gustaut terms of the power series
are possitive numbers. The asymptotic series
are $0(-t^{poly})$ perhaps a ensequence of
Unitarity.
Now vertical asymptotics $I_{41}^{mer}(0,0)(q)$
Numerically, we found out that
 $I_{41}^{mer}(0,0)(q) \sim e^{\frac{2\pi i}{2\pi t}} \frac{1}{152t-3}e^{(2nit)^2} - \frac{160(7i)^2}{414780t-3}(2nit)^2 + \dots \right)$
 $-i \times (replace t by $-t$ in J)
 $t \chi_{ij} - \frac{i}{t} + \chi'_{ij}$ it $t + \dots$
where $\chi_{ij} = 0.44582579449a35614a77$
From previous experience we tried to reagginze
this or an alg number and n but failed.
Then Compbell suggested to look for periods$

of A-poly curve

$$y = x^{-2} x^{-1} - 2x + x^{2} \quad (\text{elliptic curve})$$
and much to our surprise

$$x_{u_{1}} = \frac{\partial u_{1} + \partial u_{1}}{2\pi}$$

$$\partial_{u_{1}} = \int \frac{du}{\sqrt{e^{-2u} - 2e^{-u} - 1 - 2e^{u} + e^{2u}}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + e^{2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + e^{2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + e^{2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + e^{2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + e^{2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{-u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{-u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u}} \cdot \frac{1}{2e^{-2u} - 2e^{-u} - 1 - 2e^{-u} + 2e^{-2u}} \cdot \frac{1}{2e^{-2u}} \cdot \frac{1}{2e^{-2u$$

Periods are Mellin-Burnes integrals
Thm [GK]

$$\frac{1}{2\pi i} \int_{\xi-iR} \frac{B(z,z)^2}{(\cos\pi z)^2} dz = 2 \int_{-\infty}^{1} \frac{dx}{\sqrt{(l-x)(l-x+4x^2)}} = 5.60241216$$
where

$$B(x_1y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = \int_{0}^{1} t^{x} (l-t)^{y} \frac{dt}{t(l-t)}$$
if the Eyler B-Kinchion.