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Based on...

Joint work with Stavros Garoufalidis, Jie Gu, and Marcos Mariño.
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Motivation

Quantum SL2(C) Chern–Simons theory for three manifolds leads to
asymptotic series, which store interesting information about three
manifolds. At 0-th order they should store information about the
hyperbolic volume of the three manifold.

These series are conjecturally resurgent, which means that we should be
able to resum these divergent series and completely understand their
Stokes phenomenon.

Recent, work of Garoufalidis, Gu and Mariño described the picture for
knots in some simple examples. Their picture generalises to certain kinds
of hypergeometric series.

I aim to explain what happens when one deals with closed three manifolds
and how this relates to the Ẑ invariants of Gukov et. al. that are predicted
from physics.
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The full package

One hopes for matrix valued invariants

which solve difference equations

whose ratios at ~ and 4π2/~ give Borel resummations of asymptotic
series

whose ratios at ~ and −~ give Stokes constants of asymptotic series
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q–difference equations
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What are q–difference equations?

Consider, the q–Weyl algebra over Z[q±] generated by the symbols x , σ
such that

σx = qxσ .

We think of q as formal or for most of this talk |q| < 1. This algebra acts
on functions in x and q by

(xf )(x ; q) = xf (x ; q) and (σf )(x ; q) = f (qx ; q) .

This is well defined as

(σxf )(x ; q) = (xf )(qx ; q) = qxf (qx ; q) = qx(σf )(x ; q) = q(xσf )(x ; q) .

Then a linear q–difference equation of order r is an equation for f of the
form ( r∑

k=0

ak(x ; q)σk
)
f = 0 .

This can be thought of as defining a left module of the q–Weyl algebra.
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Solving q–difference equations: Newton polygon

To solve linear q-difference equations formally we can use an analogue of
Frobenius’ method for differential equations. To apply this algorithm it is
most instructive to consider the Newton polygon. This stores many of the
important structures associated to difference equations.

Definition:

The Newton polygon of an operator∑
k,`

ak,`x
`σk

is the convex hull of the set of points (k, `) ∈ R2 such that ak,` 6= 0.

For example, the operator (σ − 1)(σ + x) = σ2 + (qx − 1)σ − x

σ

x
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Solving q–difference equations: Convention

If we have a function f that satisfies a q-difference equation and a
function g such that

(σ − 1)g = 0 that is g(qx ; q) = g(x ; q)

then f and fg will satisfy the same q-difference equation.

Therefore, the
“constants” associated to q–difference equations are elliptic functions.
This leads to everyone their dog having their own conventions. These can
somewhat be normalised by choosing a solution to the equation

θ(qx ; q) = −q−1x−1θ(x ; q) .

For our considerations a natural choice is given by

θ(x ; q) =
∑
k∈Z

(−1)kqk(k+1)/2xk = (qx ; q)∞(x−1; q)∞(q; q)∞

where

(x ; q)n =
n−1∏
j=0

(1− qjx) .

Campbell Wheeler ReNewQuantum: Diff. equ. and 3–man. December 6th, 2022 9 / 47



Solving q–difference equations: Convention

If we have a function f that satisfies a q-difference equation and a
function g such that

(σ − 1)g = 0 that is g(qx ; q) = g(x ; q)

then f and fg will satisfy the same q-difference equation. Therefore, the
“constants” associated to q–difference equations are elliptic functions.
This leads to everyone their dog having their own conventions.

These can
somewhat be normalised by choosing a solution to the equation

θ(qx ; q) = −q−1x−1θ(x ; q) .

For our considerations a natural choice is given by

θ(x ; q) =
∑
k∈Z

(−1)kqk(k+1)/2xk = (qx ; q)∞(x−1; q)∞(q; q)∞

where

(x ; q)n =
n−1∏
j=0

(1− qjx) .

Campbell Wheeler ReNewQuantum: Diff. equ. and 3–man. December 6th, 2022 9 / 47



Solving q–difference equations: Convention

If we have a function f that satisfies a q-difference equation and a
function g such that

(σ − 1)g = 0 that is g(qx ; q) = g(x ; q)

then f and fg will satisfy the same q-difference equation. Therefore, the
“constants” associated to q–difference equations are elliptic functions.
This leads to everyone their dog having their own conventions. These can
somewhat be normalised by choosing a solution to the equation

θ(qx ; q) = −q−1x−1θ(x ; q) .

For our considerations a natural choice is given by

θ(x ; q) =
∑
k∈Z

(−1)kqk(k+1)/2xk = (qx ; q)∞(x−1; q)∞(q; q)∞

where

(x ; q)n =
n−1∏
j=0

(1− qjx) .

Campbell Wheeler ReNewQuantum: Diff. equ. and 3–man. December 6th, 2022 9 / 47



Solving q–difference equations: Convention

If we have a function f that satisfies a q-difference equation and a
function g such that

(σ − 1)g = 0 that is g(qx ; q) = g(x ; q)

then f and fg will satisfy the same q-difference equation. Therefore, the
“constants” associated to q–difference equations are elliptic functions.
This leads to everyone their dog having their own conventions. These can
somewhat be normalised by choosing a solution to the equation

θ(qx ; q) = −q−1x−1θ(x ; q) .

For our considerations a natural choice is given by

θ(x ; q) =
∑
k∈Z

(−1)kqk(k+1)/2xk = (qx ; q)∞(x−1; q)∞(q; q)∞

where

(x ; q)n =
n−1∏
j=0

(1− qjx) .

Campbell Wheeler ReNewQuantum: Diff. equ. and 3–man. December 6th, 2022 9 / 47



Solving q–difference equations: Ansatz

Now Frobenius’ method for linear differential equations takes an ansatz of
the form

exp(p(x−1))
∑
k=0

αkx
k+r ,

where p is some polynomial. To solve a linear q-difference equation we
take the following ansatz

θ(xκ; qκ)
∞∑
k=0

αk(q)xk
θ(ρ−1x ; q)

θ(x ; q)
.

We choose κ so that it correspond to a slope of the Newton polygon.
Then the vanishing of αk for k < 0 will give a polynomial equation for ρ
called the indicial polynomial. Once these are solved we get a recursion for
αk determined by α0. If ρ has multiplicity then we take an expansion
ρ = ρ0e

ε.
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Solving q–difference equations: Wronskians and Divergence

If we find a basis of solutions to a r order difference equation
f1(x ; q), . . . , fr (x ; q) then we can put them into a matrix called the
Wronskian which satisfies a first order matrix q-difference equation.

W (x ; q) =


f1(x ; q) f2(x ; q) . . . fr (x ; q)
f1(qx ; q) f2(qx ; q) . . . fr (qx ; q)

: : . . . :
f1(qr−1x ; q) f2(qr−1x ; q) . . . fr (qr−1x ; q)



The slopes of the Newton polygon also determine the behaviour of the
coefficients αk . If we have negative slopes with largest absolute value κ
(and we are solving for a flat edge) then

αk(q) ∼ q−κk
2/2+βkO(1) .

Therefore, if we want to solve in meromorphic functions we would like a
way to convert these divergent solutions to convergent. This can be done
by q–Borel re-summation as proved by Dreyfus.
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Solving q–difference equations: Borel resummation

The q-Borel transform is defined

Bκ
∞∑
k=0

αk(q)xk =
∞∑
k=0

(−1)kqκk(k+1)/2αk(q)ξk ,

and the q–Laplace transform is defined

(Lκf )(x , λ; q) =
∑
`∈Z

f (qκ`λκx ; q)

θ(qκ`λκ; qκ)
.

Note it is elliptic in λ.

Proposition:

If f (x ; q) is a polynomial in x then

LκBκf = BκLκf = f

Proof:
∑
`∈Z

(qκ`λκx)k

θ(qκ`λκ; qκ)
=

xk

θ(λκ; qκ)

∑
`∈Z

(−1)`qκ`(`+1)/2+κ`k
λ
κ(`+k) = (−1)kq−κk(k+1)/2xk .
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Aside: q–Stokes phenomenon and monodromy

The fact that the q–Laplace transform depends on an additional elliptic
variables is often referred to as q–Stokes phenomenon. It is often a little
mysterious to describe. However, in the kind of examples we will consider
later, we expect that this should be computable.

What we mean by
compute is for the Wronskians associated to the Frobenius method at
x = 0,∞, say W0,W∞, compute the elliptic matrix

M(x ; q) = W0(x , µ; q)−1W∞(x , λ; q) .

Theorem:[Zwegers]

The operator (σ − 1)(σ + x) has monodromy

M =

(
1 0
∗ 1

)
where

∗ = −(q; q)3
∞θ(q−1t; q)θ(λ−1µ; q)θ(λ−1µ−1t−1; q)

θ(λ−1; q)θ(µ; q)θ(λ−1t−1; q)θ(µ−1t−1; q)
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3–manifolds
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TQFTs: Witten’s path integral

In the 80s, Jones discovered a remarkable invariant of links. Witten
interpreted the Jones polynomial in terms of quantum field theory. In
particular, for SU(2) connections on a three manifold AM ,

ZM(~) =

∫
AM/GM

exp
(CS(A)

2πi~

)
DA

where

CS(A) =

∫
M
Tr(dA ∧ A +

2

3
A ∧ A ∧ A) ∈ C + (2πi)2Z .

Therefore, 1/~ ∈ Z for the integral to be well defined. Witten then studies
Wilson loops observables for embedded knots and conjectures the
existence of the coloured Jones polynomial for knots K and N ∈ Z>0

where q = exp(2πi~)
JN(K ; q) ∈ Z[q±] .

The critical points of CS(A) are flat connections,

Aflat
M /GM ∼= Hom(π1(M),SL2(C))/SL2(C) .
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Witten–Reshetikhin–Turaev invariants: R–matrix and
coloured Jones
Soon after Reshetikhin–Turaev realised what should be Witten’s theory
mathematically. Firstly, they construct the coloured Jones polynomials
from universal R–matrices of quantum groups Uqsl2. They use this to
construct representations of the braid group. To each component they
label by a representation and to each crossing they associated an R matrix
from the representation.

Let m, n ∈ 1
2Z>0,

Vm = Span{e−m, e−m+1, · · · , em−1, em},
Vn = Span{e−n, e−n+1, · · · , en−1, en}, µ : Vn → Vn such that
µ(ej) =

∑
i µ

i
jei = qjej , R : Vn ⊗ Vm → Vm ⊗ Vn such that

R(ek ⊗ e`) =
m∑

i=−m

n∑
j=−n

R ij
k`ei ⊗ ej =

m∑
i=−m

n∑
j=−n

min(m−i ,j+n)∑
p=0

δ`,i+pδk+p,j

× (−1)pqij−
p
2

(m+n)−(i−j)p−p(p+1)/2 (q; q)m+`(q; q)n−k
(q; q)m+i (q; q)p(q; q)n−j

ei ⊗ ej .
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Witten–Reshetikhin–Turaev invariants: R–matrix and
coloured Jones
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Example: 41

JN(41; q) =
N−1∑
k=0

q−kN(qN−1; q−1)k(qN+1; q)k .
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To difference operators: Â

Using Zeilberger theory Garoufalidis and Lê proved the existence of a
recursion for the coloured Jones polynomial. This follows from the explicit
form of the R–matrix.

In particular, consider the q–Weyl acting on
functions in q and N such that

(σJ)N(q) = JN+1(q) and (xJ)N(q) = qNJN(q) .

For a knot K they proved the existence of ÂK such that

ÂKJ(K ) = 0 .

Even before the proof of its existence Garoufalidis and Gukov conjectured
that taking the classical limit of Â defines a variety of flat SL2(C)
connection connections on S3 − K . This is called the AJ conjecture.
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Example: 41

The coloured Jones polynomial for 41 satisfies the following recursion

JN+1(41; q) = q−N (1 + qN)(1− q2N+1)

1− qN+1

− q−2N (qN − 1)2(qN + 1)(q4N+1 − q3N+1 − q2N+2 − q2N − qN+1 + q)

(1− qN+1)(q2N − q)
JN(41; q)

− 1− q2N+1

1− q2N−1

1− qN−1

1− qN+1
JN−1(41; q) .

This equation can be homogenised to a third order equation. Taking
qN = m2 and replacing JN+a(K ; q) by `a in the homogeneous part of the
second order equation we get the polynomial equation

`− (m−4 −m−2 − 2−m2 + m4) + `−1 = 0
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Witten–Reshetikhin–Turaev invariants: Closed manifolds

To construct invariants of closed 3–manifolds Witten suggested a surgery
formula from links.

Theorem:[Lickorish–Wallace]

Every closed three manifold can be constructed from gluing solid tori into
link complements.

Reshetikhin–Turaev gave the formula using the coloured Jones and used
Kirby calculus to prove its invariance. For a framed ` component link L
and a root of unity q1/4 = exp(2πia/4c) they take

WRT (M; q) =

(
2 exp(−πi/4)(q1/2 − q−1/2)∑4c

k=1 q
k2/4

)`
exp

(−3πiσL
4

)
q3σL/4

×
c−1∑

N1,··· ,N`=1

JN1,··· ,N`(L; q)
∏̀
j=1

(
qNj/2 − q−Nj/2

q1/2 − q−1/2

)2

.
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Example: 41(1, 2)

The manifold 41(−1, 2) is a hyperbolic integer homology sphere. Beliakov
and Lê prove the following formula

(1− q)WRT (q) =
∞∑
k=0

k∑
`=0

(−1)kq−k(k+1)/2+`(`+1) (q; q)2k+1

(q; q)`(q; q)k−`
.

We can add an extra variable as this expression is a hypergeometric
function to get

Fm(q) =
∞∑
k=0

k∑
`=0

(−1)kq−k(k+1)/2+`(`+1)+mk (q; q)2k+1

(q; q)`(q; q)k−`
.
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Example: 41(1, 2)

This defines a non–canonical module associated to the difference equation

q2m+2Fm(q) + (q2m+4 + qm+1 + qm+2)Fm+1(q)

+(−q2m+7 − q2m+5 − q2m+4 + qm+3 + 1)Fm+2(q)

+(−q2m+9 − q2m+7 − q2m+6 + qm+n+3 − qm+5 − qm+4 − qm+3)Fm+3(q)

+(q2m+10 + q2m+9 + q2m+7 + qm+n+4 − qm+6)Fm+4(q)

+(q2m+12 + q2m+11 + q2m+9 − qm+n+6 + qm+6)Fm+5(q)

+(−q2m+12 − qm+n+7)Fm+6(q)− q2m+14Fm+7(q) = (1− q) .

The classical limit of this gives the equation

z7 + 2z6 − 3z5 − 3z4 + 5z3 + z2 − 3z − 1 = 0 .

This variety (field) gives the set of flat SL2(C) connections of this
manifold.
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Two variable series: solving Â in q–series

Recently, Gukov and Manolescu proposed the existence of q series with a
Jacobi like variable x associated to knots they denote

FK (x ; q).

They state that these series should be related to a resummation of
asymptotic series of Vassilev invariants. Concretely, they give a method of
calculation by taking the Â operator and some initial conditions from the
coloured Jones polynomial and solve the recursion in q-series.

Notice that (`− 1) is always a factor in the A polynomial and therefore
from the AJ conjecture one should always be able to solve the recursions
as a power series in x as there should be a horizontal edge of the Newton
polygon.
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Example: 41

Recently, Park gave a formula for the figure eight knot

F41(x ; q)

=
1

2

∞∑
k,j ,`=0

(xk+j+`+1/2 − xk+j+`+3/2 − x−k−j−`−1/2 + x−k−j−`−3/2)

×
(
k + j

j

)
q

(
k + `

`

)
q−1

where (
k

`

)
q

=
(q; q)k

(q; q)`(q; q)k−`
.

Earlier, around 2010, Garoufalidis and Zagier found a version of this series
which can thought of a some kind of Kashaev invariant q–series. This is
also related to the holomorphic blocks of Beem, Dimofte, Pasquetti.

g(q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)2
k

.
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Ẑ and the WRT invariant

Gukov and collaborators expect q–series invariants of closed three
manifolds (and a spin structure a) they denote as Ẑa(q). These should be
related to some kind of categorification of the WRT invariant of the closed
three manifold. Although there is still no definition Gukov and Manolescu
propose a surgery formula using the analogue of the Laplace transform of
Beliakov and Lê to construct q–series from their two variable series.

Letting

L(a)
p/r : xuqv 7→

{
q−u

2r/pqv if ru − a ∈ Z
0 otherwise

.

For a knot K and a rational number p/r they take

Ẑa(K (p, r); q) = ±qQL(a)
p/r ((x1/2r − x−1/2r )FK (x ; q)) .
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Example: 41(1, 2)

Using the formula

(1− q)WRT (q) =
∞∑
k=0

k∑
`=0

(−1)kq−k(k+1)/2+`(`+1) (q; q)2k+1

(q; q)`(q; q)k−`
.

I considered an associated q-series

Ẑ (q) =
∞∑
`=0

∑̀
k=0

(−1)k+`q
1
2

3k(k+1)+ 1
2
`(`+1)−k (q; q)`

(q; q)2k(q; q)`−k

= 1− q + 2q3 − 2q6 + q9 + 3q10 + q11 − q14 − 3q15 + . . . .

Comparing this to the formula of Ẑ I realised they agreed up to initial
constants.

Proposition:

This q-series is the same as computed by Gukov and Manolescu.
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Asymptotics
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Stationary phase

We can apply stationary phase approximations to Witten’s integral

ZM(~) =

∫
AM/GM

exp
(CS(A)

2πi~

)
DA .

This is not defined but if Witten’s ideas are correct and the manifold has
isolated non-degenerate flat connections, we expect to find asymptotics of
the form as ~→ 0

WRT (~) ∼
∑

A∈flat SU(2) connections

exp
(CS(A)

2πi~

)
ΦA(2πi~) .

This asymptotic expansion is known as Witten’s asymptotic expansion
conjecture.
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Volumes conjecture for knots

In the early 90s, Kashaev constructed an invariant of links for each root of
unity q and conjectured that it should have asymptotics as q → 1 that
grow exponentially like the volume. Murakhami–Murakhami showed that
Kashaev’s invariant was a specialisation of the coloured Jones polynomial
which provided the following conjecture called the volume conjecture.

Conjecture:

For N ∈ Z as N →∞

JN(K ; exp(2πi/N)) ∼ exp(VolC(K )N/2πi)ΦK (2πi/N) .

Work of Dimofte, Garoufalidis, Gukov, Hikami, Lennels, Zagier provided a
conjectural definition of Φ using triangulations.

This should correspond to a geometric connection, which is an SL(C)
connection. Physically, this arises when we think of Witten’s integral as a
contour integral inside the complexified space of SU(2) connections which
can be related to SL2(C) connections.
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Volume conjecture for closed 3–manifolds

Chen–Yang proposed a volume conjecture for WRT invariants. In
particular, they suggest that

Conjecture:

For N ∈ Z as N →∞

WRTM(exp(2πi/(N + 1/2))) ∼ exp(VolC(M)N/2πi)ΦK (2πi/N) .

This is quite different to Witten’s asymptotic expansion conjecture.
However, we will see in a moment they are part of one conjecture.
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Example: 41

For 41 we have
VolC = 2.0299 · · · i

and numerically (and in this case proved by many) we find that for N ∈ Z
and as N →∞

JN(exp(2πi/N)) ∼ exp(VolC(K )N/2πi)N3/2 1

31/4

(
1 +

11

24
√
−3

3

2πi

N
+ · · ·

)

Similarly, Garoufalidis–Zagier found that for τ on a small angle above the
reals

g(exp(2πi/τ)) ∼ exp(VolC(K )τ/2πi)τ−1/2 1

31/4

(
1 +

11

24
√
−3

3

2πi

τ
+ · · ·

)

Campbell Wheeler ReNewQuantum: Diff. equ. and 3–man. December 6th, 2022 31 / 47



Example: 41

For 41 we have
VolC = 2.0299 · · · i

and numerically (and in this case proved by many) we find that for N ∈ Z
and as N →∞

JN(exp(2πi/N)) ∼ exp(VolC(K )N/2πi)N3/2 1

31/4

(
1 +

11

24
√
−3

3

2πi

N
+ · · ·

)
Similarly, Garoufalidis–Zagier found that for τ on a small angle above the
reals

g(exp(2πi/τ)) ∼ exp(VolC(K )τ/2πi)τ−1/2 1

31/4

(
1 +

11

24
√
−3

3

2πi

τ
+ · · ·

)

Campbell Wheeler ReNewQuantum: Diff. equ. and 3–man. December 6th, 2022 31 / 47



Example: 41(1, 2)
Now one can compute that this manifold has 7 flat connections which are
one Galois orbit of the geometric connection defined over a degree 7 field
and the trivial connection. The seven (ordered so the last two are complex
embeddings corresponding to the geometric and antigeometric) complex
volumes and one loops (constants of Φ) δ and generators of embbedings
of the associated fields are

Volρ1
= 20.297 . . . , δρ1

= −11.578 . . . , ξρ1
= −2.2411 . . .

Volρ2
= −6.7857 . . . , δρ2

= −12.636 . . . ξρ2
= −0.43760 . . .

Volρ3
= 39.362 . . . , δρ3

= −83.275 . . . , ξρ3
= 0.25599 . . .

Volρ4
= 9.2837 . . . , δρ4

= −7.0205 . . . , ξρ4
= 1.3348 . . .

Volρ5
= 2.1292 . . . , δρ5

= −5.3937 . . . , ξρ5
= 1.3483 . . .

Volρ6
= 4.8678 · · · − i1.3985 . . . , δρ6

= 3.9517 · · · − i0.15252 . . . , ξρ6
= 0.36981 · · · − i1.4410 . . .

Volρ7
= 4.8678 · · · + i1.3985 . . . , δρ7

= 3.9517 · · · + i0.15252 . . . , ξρ7
= 0.36981 · · · + i1.4410 . . . .
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Example: 41(1, 2)

Witten’s asymptotic expansion conjecture was studied by
Andersen–Hansen and proved to leading order by Charles–Marché for this
manifold. The SU(2) connections here correspond to 1, 2, 4, 5 and the
trivial (which is polynomially smaller than the other four). We can plot the
values against the leading order.

N

∣∣(1− q)WRT (q)N−1/2
∣∣

10 20 30 40 50 60 70 80 90 100

1
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N

∣∣(1− q)WRT (q)N−1/2
∣∣

10 20 30 40 50 60 70 80 90 100

1

∣∣∣ exp
(

Vol1N
2πi

)
δ
−1/2
1 exp(3πi/4) + exp

(
Vol2N

2πi

)
δ
−1/2
2 exp(−πi/4)

+ exp
(

Vol4N
2πi

)
δ
−1/2
4 exp(−πi/4) + exp

(
Vol5N

2πi

)
δ
−1/2
5 exp(3πi/4)

∣∣∣
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Example: 41(1, 2)

We find numerically (in this case it is proved by Ohtsuki) that for N ∈ Z
and N →∞ and q = exp(2πi/(N + 1/2))

(1− q)WRT (q) ∼ 2 exp(Vol7N/2πi)N1/2 exp(3/8)

δ
1/2
7

(
1 + · · ·

)

Similarly, for τ on a small angle above the reals we find

Ẑ (exp(2πi/τ)) ∼ exp(Vol7τ/2πi)τ1/2 exp(3/8)

δ
1/2
7

(
1 + · · ·

)
while for τ ∈ iR we see exponential growth

Ẑ (exp(2πi/τ)) ∼ exp(Vol3τ/2πi)τ1/2 exp(3/8)

δ
1/2
3

(
1 + · · ·

)
The dominant term will depend on the argument of τ .
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A conterexample

Gukov and Manolescu conjecture that Ẑ should have radial limits to the
WRT invariant. There are a few issues with this conjecture. In particular,
taking q → exp(2πia/c) on a very low angle should always see a dominant
contribution from asymptotic series coming from the geometric connection
for a hyperbolic manifold, which will dominate the asymptotics for any
hyperbolic manifold. However, even taking strictly radial limits the
previous example for 41(1, 2) will have exponential growth as
q → exp(2πia/c).

This provides a counter example to the conjecture as stated however it is
not entirely incorrect. These q-series will not necessarily have a limit but
they seems to have asymptotic series determined by all flat connections. If
the trivial connection dominates then the radial limit conjecture will be
true however if another connection dominates then it will fail.

This indicates that the conjecture should be replaced by an analogue of
the volume conjecture in general.
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Quantum modularity at roots of unity

Quantum modularity extends the asymptotic discussion to rational
numbers as opposed to just integer values of N. We already saw a volume
conjecture using rational values name the Chen–Yang volumes conjecture
which evaluated at N + 1/2.

In particular, for N ∈ Q as N →∞

Jdenom(1/N)(41; exp(2πi/N))

∼ Jdenom(−N)(41; exp(−2πiN)) exp(VolC(K )N/2πi)N3/2 1

31/4

(
1 +

11

24
√
−3

3

2πi

N
+ · · ·

)
and for q = exp(2πi/N) and q̃ = exp(−2πiN) and

(1− q)WRT (q) ∼ (1− q̃)WRT (q̃) exp(Vol7N/2πi)N1/2 exp(3/8)

δ
1/2
7

(
1 + · · ·

)
Of course when N ∈ Z and q̃ = 1 then (1− q̃)WRT (q̃) = 0 and we get

growth exponentially smaller than the volume. In fact, from Witten’s
conjecture we expect polynomial growth.
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Quantum modularity for q–series

For the q = exp(2πi/τ) series when the argument of τ is extremely small
q̃ = exp(−2πiτ) is close to O(1). Then we can observe (using say optimal
truncation) that

g(q) ∼ g(q̃) exp(VolC(K )τ/2πi)τ−1/2 1

31/4

(
1 +

11

24
√
−3

3

2πi

τ
+ · · ·

)
and

Ẑ (q) ∼ Ẑ (q̃) exp(Vol7τ/2πi)τ1/2 exp(3/8)

δ
1/2
7

(
1 + · · ·

)
.
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Conjectures for Borel and Stokes
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Borel resummation

To make analytic functions from factorially divergent series we can use
Borel resummation.

f (x) =
∞∑
k=0

akx
λ+k .

The Borel transform of this series is defined to be

B1f (ξ) =
∞∑
k=0

ak
Γ(λ+ k + 1)

ξλ+k .

If this function is convergent an has an analytic continuation with certain
growth conditions at infinity, then we can take it’s Laplace transform

L1B1f (x) =

∫ ∞
0

exp(−ξ)Bf (ξx)dξ .

This is called the Borel resummation of f which has the same asymptotics
as s(f ) from Watson’s lemma.
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Refined quantum modularity

Using the Borel resummations we can find exponentially small corrections
to the previous asymptotics expressions such as

(1− q)WRT (q) ? = ?
7∑

k=0

ωk(q̃) exp(VolkN/2πi)N1/2 exp(3/8)

δ
1/2
k

s
(

1 + · · ·
)

for some elements ωk which behave similarly to the WRT invariant and
correspond to special elements of the modules associate to the difference
equations associated to 41(1, 2).

Using a full Wronskian matrix Wm we
find that for a diagonal weight matrix ∆, P,Q matrices of rational
functions

Wm(q) ? = ? s(Φ̂m)(2πi/N)P(q̃)W0(q̃)Q(q̃)∆(N) .

This allows to consider a conjectural formula for the Borel resummation

s(Φ̂m)(2πi/N) ? = ? Wm(q)∆(N)−1Q(q̃)−1W0(q̃)−1P(q̃)−1
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State integrals

The right had side of the equation can be proved to be given by integrals
of a special function the Faddeev dilogarithm (for e(z) = exp(2πiz))

D(z ; τ) =
(e(z + τ); e(τ))∞

(e(z/τ); e(−1/τ))∞
.

Andersen and Kashaev constructed a TQFT for manifolds with cusps using
integrals of this function. Regardless for the manifold 41(1, 2) we can write
down a state integral and this is of the form

− 2(q̃; q̃)∞
τ2(q; q)∞

∫
R

∫
R
D(z2; τ)D(2z1; τ)D(z2 − z1; τ)

× exp((z2
1/τ + z1z2/τ + z1(−m −m′/τ) + z2(1 + 1/τ))2πi)dz1dz2 .

This is an integral analogue of q–hypergeometric functions. It satisfies
decoupled q and q̃ difference equations w.r.t. m and m′.

These identities provide analytic properties of the RHS. Finding
appropriate P give conjectural formulae for the Borel resummation.
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Conjectures for singularities of the Borel transform

There are conjectures for the singularities for Borel transform of
asymptotic series. In particular, for the asymptotic series B1ΦA associated
to a connection A it is conjectured that the Borel transform with have
logarithmic singularities at the points

CS(B)− CS(A) + 4π2Z.

At each of these points the function looks locally like

SA,B,k exp((CS(B)− CS(A) + 4π2k)/(2πiz))

×B1(Ei((CS(B)− CS(A) + 4π2k)/z)ΦB(z))

where SA,B,k ∈ Z. These integers are called Stokes constants. The Borel
resummation for arg(τ) = arg(CS(B)− CS(A) + 4π2k)± ε changes by

SA,B,k exp((CS(B)− CS(A) + 4π2k)/(2πiz))s(ΦB) .
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Conjectures for Stokes matrices

Therefore, we can collect Stokes constants into matrices of q̃ series
indexed by

CS(A) + 4π2Z.

Then if we compute using quantum modularity for τ with some fixed
argument just above the positive reals

s(Φ̂m)(2πi/N) ? = ? Wm(q)∆(N)−1QI (q̃)−1W0(q̃)−1PI (q̃)−1

and for τ just above the negative reals

s(Φ̂m)(2πi/N) ? = ? Wm(q)∆(N)−1QII (q̃)−1W0(q̃)−1PII (q̃)−1

then the Stokes matrices are conjecturally given by

PI (q̃)W0(q̃)QI (q̃)QII (q̃)−1W0(q̃)−1PII (q̃)−1 .
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Stoke automorphisms: Picture
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Example: 41(1, 2)

For example, the Stokes indices for singularities in the Borel plane with
positive imaginary part for 41(1, 2) can be collected into generating series.
The first few terms of the top corner of the full 8× 8 matrix of Stokes
indices can be computed to be(
−q − 2q2 − q3 + 2q4 + 6q5 + · · · 1 + q − 2q3 − 5q4 − 7q5 + · · ·

q2 + 2q3 + q4 − q5 + · · · −q − q2 + q4 + 5q5 + · · ·

)

The closest singularies come from setting q = 0 which gives the matrix for
the 7× 7 part 

0 1 0 0 −1 1 1
0 0 0 0 0 0 0
0 1 0 0 −1 1 1
0 −1 0 0 1 −1 −1
0 0 0 0 0 0 0
0 1 0 0 −1 0 0
0 1 0 0 −1 0 0


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Thanks!
References:
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Volume conjectures for the Reshetikhin–Turaev and the Turaev–Viro invariants. Chen, Yang.

Building Meromorphic Solutions of q-Difference Equations Using a Borel-Laplace Summation. Dreyfus.

The resurgent structure of quantum knot invariants. Garoufalidis, Gu, Mariño.

Peacock patterns and resurgence in complex Chern-Simons theory. Garoufalidis, Gu, Mariño.

Resurgence of Chern-Simons theory at the trivial flat connection. Garoufalidis, Gu, Mariño, W.

Modular q-holonomic modules. Garoufalidis, W.

Knots, perturbative series and quantum modularity Garoufalidis, Zagier.

A two-variable series for knot complements. Gukov, Manolescu.

Inverted state sums, inverted Habiro series, and indefinite theta functions. Park

On the asymptotic expansion of the quantum SU(2) invariant at q = exp(4πi/N) for closed hyperbolic 3–manifolds
obtained by integral surgery along the figure-eight knot. Ohtsuki.

Thesis. W.

Quantum modular forms. Zagier.

Mock Theta Functions. Zwegers.

Campbell Wheeler ReNewQuantum: Diff. equ. and 3–man. December 6th, 2022 47 / 47


	q–difference equations
	3–manifolds
	Asymptotics
	Conjectures for Borel and Stokes

