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This talk concerns a relation between supersymmetric field
theory and the theory of differential/difference equations.

I will review parts of the basic story, give some updates, and
discuss some more speculative things near the end.

Very many people have influenced this subject, and I think
some of you are much more expert than I. I hope I don’t make
too many mistakes.

I learned most of what I know about this subject through joint
work with Davide Gaiotto and Greg Moore, and subsequent
joint work with Chris Beem, David Ben-Zvi, Mat Bullimore,
Tudor Dimofte, David Dumas, Laura Fredrickson, Alba Grassi,
Qianyu Hao, Lotte Hollands, Ali Shehper, Fei Yan.
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Our starting point is a 4-dimensional quantum field theory with
N = 2 supersymmetry; e.g. supersymmetric Yang-Mills theory
with G = SU(2) [Seiberg,Witten]

In this theory we introduce a 2-dimensional defect, preserving
N = (2,2) supersymmetry in two dimensions. So we are
considering a coupled 2d-4d system. [Gaiotto, Gukov, Witten,
...]

(An important special case arises when the 4d theory is trivial
— then “defect” just means a 2d theory with N = (2,2)
supersymmetry.)

Such a defect generally has a moduli space C of chiral
couplings. C is a complex analytic space.
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There is a dictionary which connects this situation to (a family)
of linear ODE defined on C, with meromorphic coefficients and
a parameter ε. [Dorey, Dunning, Gaiotto, Jeong, Moore, N,
Nekrasov, Shatashvili, Tateo, ...]



Some examples of QFT-ODE:

I Defect in supersymmetric Yang-Mills with G = SU(2) gives
Mathieu equation (Schrödinger with periodic potential),

I Defect in supersymmetric Yang-Mills with G = SU(3) gives
a 3rd-order equation [Yan],[
∂3

z + ε−2 u1+ε2

z2 ∂z + ε−3
(

Λ
z4 + u2

z3 + Λ
z2

)
− ε−2 u1+ε2

z3

]
ψ(z) = 0 ,

I Defect in Argyres-Douglas (A1,An) theory gives
Schrödinger equation with polynomial potential,
[ε2∂2

z + Pn(z)]ψ = 0, [Ito, Kawai, Shu, Takei, ...]
I Defect in Argyres-Douglas (Am,An) theory gives

[εm+1∂m+1
z + · · ·+ Pn(z)]ψ = 0, [Dumas, N, ...]

I Defect in Minahan-Nemeschansky E6 theory gives
3rd-order equation with 3 regular singularities on CP1,
[Hollands, N],

I 2d Landau-Ginzburg model for W : CN
→ C gives

“quantum differential equations” obeyed by exponential
integrals

∫
γ⊂CN e−W/ε, [Dubrovin, Saito, ...]

I ...
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Given any of these ODEs, e.g. Schrödinger eq(
ε2∂2

z + P(z)
)
ψ(z) = 0 ,

we can build solutions by Borel summation of perturbation
theory around ε = 0 (“exact WKB”).

Given a formal perturbation series solution,

ψf (z, ε) = exp

(
ε−1

∫ z

φ(z′) dz′
)

= exp

(
ε−1

∫ z ∑
an(z′)εn dz′

)
define the Borel transform (formal inverse Laplace transform)

Bφ(z, ζ) =
∑ an(z)

n!
ζn

Singularities of (the analytic continuation of) Bφ(z, ζ) are
responsible for Stokes phenomena: nonperturbative jumps of
local solutions ψ(z, ε), important for the global analysis. [Ecalle,
Kawai, Silverstone, Takei, Voros, ...]
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One entry in the ODE-QFT dictionary: [Gaiotto, Grassi, Gu,
Hao, Marino, Moore, Kawai, N, Takei, ...]

A singularity of Bψ(z, ζ) at ζ = ζ0(z) corresponds to a BPS
particle in the surface defect theory. The quantity ζ0(z) is the
“central charge” of the particle. (In particular, the mass of the
particle is M = |ζ0(z)|.)

Appearance/disappearance of singularities as z ∈ C varies
corresponds to (2d-4d) wall-crossing phenomenon in the field
theory. (Stokes phenomenon for solutions is “framed”
wall-crossing.)

This can be used in practice: sum up the perturbative series to
finite order and use Pade approximation to discover BPS
particles.

(BPS particles of the 4d theory without defect also show up as
singularities on the ODE side: in Borel summation of Voros
symbols / cluster coordinates.)
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One can fix ε and look where Stokes phenomena occur in the
parameter-space C: this gives the Stokes graph / spectral
network [Gaiotto, Kawai, Moore, N, Takei, Voros, ...]

For example, this one appears in the (A2,A2) Argyres-Douglas
theory, corresponding to the equation(

ε3∂3
z +

1
2

(−z3 + 3z2 + 2)
)
ψ(z) = 0



The spectral network is a useful tool for determining the BPS
spectrum and for quantitative analysis of the ODE — eg
computing Stokes data / monodromy.

For the case above, one can make precise statements about
the Stokes data, determining e.g. their asymptotic expansions
around ε = 0, and identifying them as solutions of integral
equations. These are not theorems, mainly because Borel
summability of the local solutions is not proven; but they can be
tested numerically. [Dumas, N]
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The complexity of the network poses practical challenges,
especially in higher rank cases, eg for (A3,A7) one meets
pictures like the one below:

They have resisted analysis so far.

(We’ll return to this later in the talk.)



Why does this ODE-QFT dictionary exist?

One (slightly indirect) way to get it: study the vacuum Hilbert
space of the defect theory on S1 of radius R. This gives a
complex vector bundle VR over C, and tt ∗ geometry predicts VR
carries a family of flat connections, parameterized by ζ ∈ C×.
Then take “conformal limit” R → 0, ζ→ 0, with ε = ζ/R fixed.
[Cecotti, Gaiotto, Moore, N, Vafa]

But the ODE-QFT dictionary also arises more directly, upon
studying an “S1-equivariant” (Ω background) version of the
2d-4d system, where S1 acts by rotation in the plane of the
surface defect. Then ε is the equivariant parameter. [Jeong,
Nekrasov, Shatashvili]
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The Ω background induces a sort of deformation quantization
of all the algebraic/geometric structures in the theory. Relevant
for us: the structure of local operators, which can be inserted at
points of the spacetime.

In general QFT local operators form something like a
factorization algebra. But in supersymmetric QFT one can get
more tractable structures.

This is most familiar in 3-dimensional theories with N = 4
supersymmetry. One fixes a “topological” supercharge Q ,
which acts on local operators. Then Q-cohomology carries
structure of commutative Poisson algebra.

Turning on Ω background deforms Q-cohomology from a
commutative Poisson algebra to a noncommutative algebra.
This is the usual sort of deformation quantization. [Gaiotto,
Moore, N, Yagi, ...]
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There are similar structures in other dimensions, with different
flavor. Right now we want the 2-dimensional version.



We consider the theory on the surface defect. Take the
cohomology of a topological supercharge Q . As we vary the
couplings, this cohomology sweeps out a holomorphic vector
bundle E over C.

We have a commutative product, E → End(E): defined by

O · O
′ = lim

z→0
O(z)O′(0)

(commutative because the configuration space of pairs of
points in R2 is connected.)

We also have a map TC ↪→ E: because any first-order
deformation along C is induced by “adding to the action” an
integral

∫
d2z O(2)(z) constructed from an operator O ∈ E.

Putting these structures together we get a holomorphic map
ϕ : TC → End(E), obeying ϕ∧ϕ = 0. This means E is naturally
a Higgs bundle over C.
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Now turn on Ω background, with S1-equivariant parameter
ε ∈ C. I’ll work to first order in ε only.

Let Eε be cohomology of deformed supercharge Qε. Q2
ε is a

rotation around the origin; thus operators away from the origin
cannot be Qε-invariant. Thus, even if O(0), O′(0) are
Qε-invariant, O(z)O′(0) will not be.

We can average over the circle, defining

O · O
′ = lim

r→0

1
r

∮
O(z)O′(0) dz .

However, this is still not Qε-invariant.

Thus we have no multiplication in Eε for ε , 0 — looks like Eε is
just a (pointed) vector bundle over C.
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Another thing we could consider: perturb the theory by “adding
to the action” t

∫
d2z O(2)(z).

A Q-closed operator O′ of the unperturbed theory does not
necessarily remain Q-closed in the perturbed theory. One way
to see this: need to regularize

∫
d2z O(2)(z)O′(0) by cutting out

a small disc around z = 0, and this regularization breaks
Q-invariance. Said otherwise, we do not get in this way a
natural connection in E.

The two problems we just discussed can be made to cancel one
another. If we perturb by tO(2) and also turn on Ω background
parameter ε, then in the perturbed theory the combination

tO · O′ + εO′

is Qε-invariant.

Said otherwise, the bundle Eε does carry a natural
ε-connection. (Rescale it by ε−1 to get an ordinary connection.)
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I just discussed one strategy for explaining why the deformation

Higgs bundle E  bundle Eε with (flat) ε-connection

arises naturally from the S1-equivariant Ω deformation of a
2d-4d system.

This point of view is close to ones pursued before from many
different directions: particularly 2d TFT, Gromov-Witten theory.
[Ben-Zvi, Dijkgraaf, Dubrovin, Getzler, Givental, Goodwillie,
Kontsevich, Nadler, Nekrasov, Verlinde, Verlinde, Witten, ...]

To develop it precisely in our context, see it works beyond first
order in ε, and see that we get exactly the expected ODEs, is
work in progress [N, Shehper].
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Now let’s consider a variant. We take a surface defect theory
which supports a U(1)N flavor symmetry. Then let C be the
space of complex “twisted mass” parameters (equivariant
parameters for U(1)N).

In this case deformation of the 2d theory along C is not a
descendant of a chiral operator, so the story of Ω-background
deformation is a little different:

Multiplicative Higgs bundle difference equation over C.
[Aganagic, Birkhoff, Cecotti, Cheng, Elliott, Gaiotto, Kontsevich,
Krefl, Pestun, Ramis, Sauloy, Soibelman, Vafa, ...]

It appears that, in parallel to the previous case, BPS particles in
the field theory correspond to Stokes phenomena for the
difference equation. [Alim, Beem, Cecotti, Dimofte, Gaiotto,
Grassi, Hao, Hollands, N, Pasquetti, Tulli, Vafa, ...]
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Basic example: free 2d theory of a chiral multiplet. This theory
has U(1) flavor symmetry.

Here C = C (parameterized by the flavor mass), and the
relevant difference equation is

xψ(x) = ψ(x + ε)

Solved by (roughly) Gamma function.

There are Stokes phenomena along two rays in the ε-plane.
These correspond directly to the two BPS particles of the
theory.
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Particularly interesting examples arise by dimensional
reduction of a supersymmetric 3d-5d system on S1.

Basic example: theory of a 3d chiral multiplet, reduced on S1.

Here C = C× (the flavor mass is periodic), and the relevant
difference equation is

exψ(x) + ψ(qx) − ψ(x) = 0

where q = e~. Solved by (roughly) quantum dilogarithm.

There are Stokes phenomena along infinitely many rays in the
ε-plane. These correspond to the infinitely many Kaluza-Klein
modes of the chiral field. [Beem-Dimofte-Pasquetti,
Dimofte-Gaiotto-Gukov, Cecotti-Gaiotto-Vafa,
Garoufalidis-Kashaev, Grassi-Hao-N, Alim-Hollands-Tulli, ...]
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In 3d-5d systems there is an analog of spectral network, called
exponential network [Banerjee, Eager, Longhi, Romo, Selmani,
Walcher, ...] which governs the BPS spectrum; e.g. part of the
network for a 3d defect in 5d SU(2) super Yang-Mills is shown
below:

We expect (and checked in the simple cases on previous
slides) that these exponential networks are Stokes graphs, just
like their spectral network counterparts.

This should be a useful clue toward development of the WKB
method for difference equations. [Dingle, Kashani-Poor, ...]
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So far most examples of 2d-4d systems studied involve a
1-dimensional parameter space C. But the theory also makes
sense for higher-dimensional parameter spaces.

In some cases I want to suggest that it is really more natural to
consider these, rather than the 1-dimensional ones.
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We consider the 4d (A2,A1) Argyres-Douglas theory.

This theory has a single Coulomb branch operator O, of scaling
dimension 6

5 .

It admits a conformally invariant surface defect with chiral ring
generated by O and σ, obeying σ3 + O = 0. Perturbing the
surface defect by the operator σ, with coefficient y, this relation
becomes

σ3 + y2 + O = 0 .
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This chiral ring relation quantizes to an ODE in the y-plane,

(ε3∂3
y + y2 + 〈O〉)ψ = 0

One could study this equation by itself.



But we can also deform by the operator 1
2zσ2. That gives an

extended moduli space Ĉ = C2 of surface defects.

Over this space we have a chiral ring

σ3 + (zσ+ y)2 + O = 0

which naturally embeds into T ∗Ĉ. Quantizing it gives a system
of compatible equations

(ε3∂3
y + (εz∂y + y)2 + 〈O〉)ψ = 0 ,

(ε∂z −
1
2
ε2∂2

y)ψ = 0 .

As we vary z, the equation in the y-plane undergoes iso-Stokes
deformation (shown in accompanying notebook).
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What is this good for?

I It is really the natural context: from QFT side, no good
reason to restrict to the locus z = 0.

I As we saw before: going to large z seems to simplify the
spectral network.

I In rank 2 theories, the geometry of Stokes phenomena has
to do with strip decompositions of C. Simple pieces,
simple transition functions from one piece to another
(“half-translation surface”.)

In higher rank, this is not true: the local structure on C is
complicated, given by many overlapping foliations. But it
becomes true again if we use the higher-dimensional
parameter space Ĉ.
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What if we try deforming by higher powers σn?

These are “irrelevant” deformations in the language of the
renormalization group flow (scaling dimension > 2). This is
much more delicate than what we considered up to now: it’s not
clear a priori that theories obtained by these deformations
really exist. They might depend on some additional choice of
how to “UV complete” the theory.

Wild guess: perhaps there is a UV completion corresponding to
the 3-KdV hierarchy. This is a natural infinite family of
iso-Stokes deformations of the equation in the y-plane,
parameterized by higher “times” which should be naturally dual
to combinations of the σn.

It would not be surprising to see KdV hierarchy appear here: cf.
its appearance in matrix models, topological strings, minimal
string theories [Aganagic, Dijkgraaf, Douglas, Klemm, Marino,
Moore, Vafa, ...]
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We can consider a similar idea in 4d “class S” theories. These
theories are obtained by compactification of 6d (2,0) theory of
type sl(N) on a Riemann surface C.

A class S theory admits a family of surface defects,
parameterized by y ∈ C. The chiral ring has the form

σN +
∑

σN−i
Oi(y) = 0

where each Oi(y) is a Coulomb branch operator of the 4d
theory. [Alday, Drukker, Gaiotto, Gomis, Gukov, Moore, N,
Okuda, Seiberg, Tachikawa, Teschner, Verlinde, ...]

The deformation by σ shifts the parameter y. This is a marginal
deformation (scaling dimension = 2).
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A class S theory admits a family of surface defects,
parameterized by y ∈ C. The chiral ring has the form
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But we also have available the irrelevant deformations by σk , for
k > 1.

I don’t have a complete picture of how to think about these
deformations. But let’s simplify a bit by considering only the
situation at the origin of the Coulomb branch of the 4d theory,
i.e. set all Oi = 0. In this case we only have σ, σ2, . . . , σN−1.

These deformations should parameterize some
(N − 1)-dimensional extended moduli space Ĉ of surface
defects, containing the original curve C ⊂ Ĉ.
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A candidate geometric description of the extended space Ĉ: Ĉ
parameterizes holomorphic Lagrangian subspaces of the
(N − 1)-th order infinitesimal neighborhood of T ∗C.

(Why? One heuristic: consider T ∗C and a Lagrangian
subspace L ⊂ T ∗C, intersecting the zero section transversely.
Then L determines a surface defect in the class S theory, via
intersection of M5-branes in T ∗C. The class S theory at the
origin of the Coulomb branch only sees the expansion of L up
to (N − 1)-th order around C.)

Recently, from a very different perspective, [Reid] studies this
space Ĉ and a natural Higgs bundle on it, relates deformations
of Ĉ to rank N higher complex structures on C [Fock, Thomas].
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parameterizes holomorphic Lagrangian subspaces of the
(N − 1)-th order infinitesimal neighborhood of T ∗C.

(Why? One heuristic: consider T ∗C and a Lagrangian
subspace L ⊂ T ∗C, intersecting the zero section transversely.
Then L determines a surface defect in the class S theory, via
intersection of M5-branes in T ∗C. The class S theory at the
origin of the Coulomb branch only sees the expansion of L up
to (N − 1)-th order around C.)

Recently, from a very different perspective, [Reid] studies this
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Another wild guess:

We know that the moduli space of complex structures on C is a
space of marginal (scaling dimension = 4) deformations of the
4d class S theory.

Could it be that the moduli space of higher complex structures
on C is a space of irrelevant (scaling dimension > 4)
deformations of the 4d class S theory?

At least, these deformations do naturally produce higher
Beltrami differentials [Shehper, N, Nekrasov, ...].
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Thank you!


