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Transseries and their universality: a bird’s view

• Hardy’s crucial remark: “The only scales of infinity that are of any practical im-
portance in analysis are those which may be constructed by means of the logarith-
mic and exponential functions.” (Orders of Infinity, 1911 §III, 1.). Cf. transseries.

• Building transseries. One starts with a primitive “le�er”, ” exp ” and rules
of “sentence formation” by means of composition, function inversion, infinite
sums with real (or complex) coe�icients and products. The formal universe thus
generated is the space of transseries.

• Example of a transseries as x → +∞:

exp

[
exp(x)

∑
k∈N

k!x−k−1

]
+
∑
l∈N

(e−xxβ log x)k
∑
k∈N

cklx−l

The terms must be well ordered descendingly as x → +∞
• Independently∼ 2005: Aschenbrenner, van der Hoeven, and OC proved rigor-

ously, and : transseries are the closure of formal power series under all operations–
that we could imagine. As a result, “natural” functions in analysis that have
asymptotic representations at infinity should be represented by transseries.
These ideas go back to Écalle.
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• Let L be the Laplace transform. The series f̃ is called resurgent if its Borel
transform F = Bf (B = formal L−1 w.r.t. a unique power of x , the Écalle
critical time), is

• (1) Écalle-Borel summable. EB summation (LB) is Borel summation enhanced by
Écalle averaging to tackle singularities and Écalle acceleration to deal with possi-
ble superexponential growth. Furthermore: F has a rich set of special properties:

• (2) endless continuability on a Riemann surface (in any bounded neighborhood of
a curve on the associated universal cover, F the set of singularities is discrete)

• (3) the singularities of F are interlinked by a set of relations, Écalle’s bridge equa-
tions.

• (4) A�er Écalle acceleration (rarely needed), in sectors without singularities on the
first Riemann sheet, F has at most exponential growth.

• In practice, a�er summing all component series of a transseries, it becomes
convergent, so I omit more general definitions.

• The space of EB summable transseries is believed, following Écalle, to be simi-
larly closed under all operations in analysis. But so far, no one dared to engage
in such a mathematically monumental, and possibly futile enterprise.

• All evidence points out that series coming from QFT, QCD etc are also resur-
gent. The origin of this resurgence is still shrouded in a mist.
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Resurgence in generic meromorphic ODEs: “All” is known.

• Placing the singularity at infinity the normal form in Écalle critical time is

y′ = (Λ + x−1B)y + g(x−1, y) + f0(x−1); y ∈ Cn (∗)

Λ = diagλi,B = diagβi , f0 = o(x−m), g = O(x−2, x−2y, y2)

Theorem (OC, Duke Math. J. 1998)

Let LB be the Écalle-Borel summation operator along some chosen direction.
• (i) The general formal transseries solution is

ỹ = ỹ0 +
∑
k>1

Cke−k·λx xk·βỹk(x), C ∈ Cn (Ck :=
∏
i6n

Cki
i )

Well-ordering imposes the constraint Cj = 0 if Re (λjx) 6 0.

• (ii) The general o(1) actual solution is the Écalle-Borel sum

LBỹ = LBỹ0 +
∑
k>1

Cke−k·λx xk·βLBỹk(x),

• (iii) Écalle averaging is equivalent to a Laplace transform in a Banach space of general-
ized distributions. (iv) LBỹ is analytic in (x,C) for large x in the given direction.
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Borel plane of Yk = Bỹk, nonlinear ODEs

• Y0 has equally spaced singularities at kλj , k ∈ N, j 6 n.

• Y(3,0,...,0) has additional singularities at −2λ1 and −λ1.

p=1

2 3 4 5

1
2 + iσ

1
2 − iσ

Balanced average: σ = 1
2 ; general C ⇔ σ ∈ R

Figure: All reality-preserving averages, in ODEs
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How resurgence relations are seen in this formalism

Theorem (OC, Duke Math. J. 1998)

i) For all k and Re (p) > j, Im (p) > 0

Y±j∓
k (p)− Y±(j−1)∓

k (p) = (±S1)j
(

k1 + j
j

)(
Y∓k+je1

(p− j)
)(mj)

In particular, farther singularities of Y0 are obtained from analytic continuations
around the first ones.

• The paper above contains a variety of other results on the Borel plane structure,
the precise shape of each singularity, bounds on the transseries, etc. See also
the less general but more user-friendly OC, IMRN, 1995.

• Next, transseries breakdown and formation of singularities.
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Antistokes lines. Transseries and beyond

y = y0 +
∑
k>1

Cke−kxyk(x) =
∑
k>0

ξkyk (yk := LBỹk)

• Take for simplicity n = 1, λ = 1, β = 0. Near antistokes lines `, x = i|x|, the ex-
ponential becomes oscillatory, then large; the resummed transseries diverges.
What happens to the solution?

• Roughly: At fixed x , y is a series in C, convergent in some disk D. On ∂D there
must be singular points Cj . To leading order in x , this means singularities at
the periodic points x satisfying Ce−i|x| = Cj .

Transasymptotic matching

• Write ỹ =
∑

k,l ck,lξ
kx−l . Near `, when Cke−kx =: ξ � x−1 reexpand: Since

ξ � x−1, near `, the dominant part of ỹ is ỹ ∼
∑

k

c0kξ
k .

Next comes the x−1 correction: ỹ ∼
∑

k

c0kξ
k + x−1

∑
k

c1kξ
k . And so on.
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• For a general ODE we formally get

y(ξ1, x) ∼
∑∞

l=0 Fl(ξ1)x−l ξ1 = C1e−λ1xxβ1 (∗)

Theorem (Singularities. O C, R D Costin, Invent. Math., 2001)

(∗) is an asymptotic expansion of y in the singular region near antistokes lines `
valid within o(1) of actual singularities of y. To leading order, y is singular near the
singularities of F0; the corrections are given by Fj, j > 1.

• The singularities, are quasiperiodic since ξ1 is. (First observed empirically.)

• For first and second order ODEs the Fk satisfy ODEs solvable by quadratures!

For Painlevé equations the Fk are rational functions. In PI F0 =
ξ

(ξ/12− 1)2 :

double poles. Integrability can be seen in Borel plane.

• A curious phenomenon: In typical nonintegrable systems, quasiperiodic small
“galaxies” of branch points appear, with more singularities inside.

• Transasymptotic matching is now o�en used in ODEs, PDEs etc to detect sin-
gularities, or otherwise understand the new phenomena when transseries break
down. Used in math to prove the Dubrovin conjecture (OC, Huang, Tanveer,
Duke Math J, 2014) among many other problems.
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Resurgence in PDEs

First the bad news.

• Unlike in ODEs, for which the general transseries can be generated algorith-
mically, in many PDEs power series/transseries are not formally computable.

• Take, e.g., iψt = −∆ψ + r−1ψ + V (x) cosωt . What are the dominant terms
for large t? All.

• It turns out that for large t , the coe�icients of the leading power series ofψ(x, t)
depend onψ(x, 0). I.e., the asymptotic problem is also a connection problem.

• Furthermore, most o�en, we cannot take L−1 of the PDE because analyticity
in a half plane fails, as we shall see.

Now the good news.

• Note that the inverseL−1 is dual toL (they both are Fourier transforms!). They
are equivalent. But, at least for linear problems, L is primus inter pares (“first
among equals”).
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Laplace or inverse Laplace?

• Start with trivial example. y ′ + y − x−1 = 0; taking L(xy ′ + xy − 1) we get

−qY ′(q)− Y ′(q)− Y(q)− 1
q

= 0 with solution
C

q + 1
− log(q)

q + 1
.

• Now L−1(C/(p + 1)) = Ce−x . For second term, deform the contour onto R−
collecting the branch jump of the log. Then take q = −p. We get

y(x) = PV
∫ ∞

0

e−px

1− p
dp + Ce−x (1)

which is the Écalle-Borel sum medianized (for free!) of the general transseries
solution ∑

k>0

k!

xk+1 + Ce−x

The expansion of y near zero gives log(x) + γ + C + o(1) and we also solved
the connection problem!

OC, RD Costin, G Dunne, JL Lebowitz… Resurgence 10 / 24



Time independent Schrödinger

• Our research focuses on the time-periodic Schrödinger equation. To avoid
becoming too technical, I’ll mainly discuss the much simpler equation time-
independent one:

iψt = −ψxx + Vψ =: Hψ (2)

with supp(V ) ⊂ [−1, 1]. where we assume that V and the initial condition are
C2 and compactly supported on [−1, 1].

• The Laplace transform y = Lψ bring this problem to one of parametric resur-
gence,

y ′′(x)− (V (x)− iq) y(x) = iψ0(x) (3)

• The singularities in Laplace space: a square root branch at the bo�om of the
continuous spectrum, and poles at all eigenvalues and all resonances (corre-
sponding to Gamow a.k.a. dressed states).
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Theorem
(OC, Huang) The Borel summed transseries of ψ(x, t) is

ψ(x, t) = LBψ̃(x, t) +
N∑

k=1

bkψk(x)e−iEk t +
∞∑

k=1

gkΓk(x)e−γk t (4)

Here ψ̃ is an asymptotic power series, ψk are eigenstates (bound states), Γk

are Gamow states and the exponential sum is (except for degenerate cases) a
lacunary Dirichlet series.

γk ∼ const · k log k + k2π2i/4 as k → +∞ (5)

R+ is a natural boundary in t (except for very special V ’s).

• If ψ0 and V have su�icient analyticity a result of OC and Huang shows that the
Dirichlet series is itself resurgent and can be resummed, including for small t .

• For time-periodic potentials (next slide), in all se�ings we studied, the eigen-
states are pushed in the complex domain and give rise to exponential decay.
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PDEs: the Schrödinger equation, time-periodic

• Over the years we looked at a variety of one particle nonrelativistic models
of ionization and the photoelectric e�ect with various types of potentials
(including a 3d Coulomb model), modeling interaction of laser with atoms. To
this day, resurgence methods are still the only ones available to get quantitative
nonperturbative results.
[arxiv, 19, 18, 18a, 18b, 04, 03, 01a, 01, 10, 10a, 09, 03a, 02, 01c, 01d, 01e, 00]

• Mathematically, we have Schrödinger’s equation,

i∂tψ(x, t) = [−∆ + V0(x) + V1(x, t)]ψ(x, t), x ∈ R3, t > 0; ψ(0, x) = ψ0

• V0 is the time-independent part of the potential. For instance, V0 = −C/|x| for
Hydrogen atoms.

• V1(x, t) is the external periodic forcing; for a classical monochromatic E-M field,
V1(x) = E · x cos(ωt + ϕ).

• Complete ionization means
∫

B |ψ|
2dV → 0 as t →∞ for any bounded B.

• We showed complete ionization in all models (though this is highly generic, it is
o�en not easy to show) except in ones that we engineered as counterexamples.
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Perturbation expansions with a limited number of terms

(OC, G. Dunne)

• In problems of high complexity in mathematics and physics o�en the solution
can only be obtained as finitely many terms, n, of a perturbation expansion,
usually divergent but resurgent. We assume a�er Borel transform we have
only n terms of the Maclaurin polynomial, Pn, of F .

• The question is to calculate F from Pn as accurately as possible. What in fact is
the maximal possible accuracy?

• Without further information about F , this question is (clearly) not well posed.

• But we show it becomes well posed within generic classes of functions living
on some common Riemann surface Ω and with some common rate of growth.

• Ω and bounds are known apriori in the Borel plane rigorously for resurgent
functions, or conjecturally in QFT, QCD, etc. They can be inferred nonrigor-
ously but with high observed accuracy with the very methods we introduce.

• The optimal accuracy can be dramatically be�er than that obtained in estab-
lished ways (such as Padé, or conformal maps).
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A wealth of information in Pn is not manifest.

Some questions of interest in math and physics

• Analytic continuation on the Riemann surface. Understand F on higher
Riemann sheets of Ω. We can o�en explore tens of sheets of Ω.

• Coe�icient extrapolation. From P9 of linear 2nd order ODEs, one can extrap-
olate P481 with relative errors in the coe�icients of at most ∼ 0.1%.

• Global reconstruction of a function from its asymptotic expansion in
the physical domain. Explained in the sequel.
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Notations and conventions we use

• By the uniformization theorem, a sweeping generalization of the Riemann map-
ping theorem, any simply connected Riemann surface Ω is conformally equiv-
alent to one of D,C, Ĉ. In all but the simplest cases, it is D.

• Because of analyticity at zero in Borel plane Ω contains on their first Riemann
sheet a disk around zero, say D.

• We denote by ψ : Ω→ D the uniformization map of Ω, and let ϕ = ψ−1.

Figure: Notation. The uniformizing map z = ψ(ω) is the conformal map from the
simply connected Riemann surface Ω to D; ϕ = ψ−1. The map is normalized as usual,
ψ(0) = 0, ψ′(0) > 0.
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The optimal reconstruction procedure

• Let Pn(ω) be the Maclaurin polynomial of an F (ω) analytic on Ω. Let ψ be the
uniformization map (conformal map to D) of Ω s.t. ψ(0) = 0, ψ′(0) > 0 and let
ϕ = ψ−1. Note that ϕ(D) = Ω and F ◦ ϕ is analytic in D.

The most accurate reconstruction (quantified in the theorem below) of F is as
follows.

1 Take (Pn ◦ ϕ)(z).

2 Expand (Pn ◦ ϕ)(z) in Maclaurin series at zero.

3 Less is more? Discard all terms beyond the nth! We get a polynomial (Pn ◦ϕ)n.

4 The best approximant is R̂n := (Pn ◦ ϕ)n ◦ ψ .

5 To improve the accuracy of reconstruction, we needed to throw away part of the
information we had (‼)
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Less is more!

1 Take (Pn ◦ ϕ)(z). Expand (Pn ◦ ϕ)(z) in Maclaurin series at zero.

2 Discard all terms beyond the nth (!) We get a polynomial (Pn ◦ ϕ)n.

3 The best approximant is R̂n = (Pn ◦ ϕ)n ◦ ψ .

• It seems downright bizarre that we need to discard information, by truncating
Pn◦ϕ to (Pn◦ϕ)n to get more accuracy… But, had we kept all terms we would’ve
go�en precisely what we started with.

• More precisely: All terms beyond the guaranteed one, an−1,

are exponentially wrong. The relative error of a calculated extra term ãn =
(Pn+1 − Pn) ◦ ϕ w.r.t. an (unknown to us), say 0 6= an, is 1 − ãn/an = ϕ′(0)n.
Because D ⊂ Ω we have ϕ′(0) > 1. (Typically ϕ′(0) > 2.)
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Theorem (OC, G. Dunne CMP 2022)

–Let ω0 ∈ Ω, and Pn an (n − 1)-order truncation of a Maclaurin series, converging
in D.

–Define Fn = {F analytic on Ω : ||F‖∞ <∞, and Pn is the Maclaurin polyn. of F}
–Let R̂n = (Pn ◦ ϕ)n ◦ ψ.

Rate of approximation: Let ω0 ∈ Ω. For F ∈ Fn we have

|F (ω0)− R̂n(ω0)|
‖F‖∞

6
|ψ(ω0)|n

1− |ψ(ω0)|
(∗)

Optimality: ∀Rn ∈ C and δ > 0 ∃Fδ ∈ Fn s.t.
|Fδ(ω0)− Rn|
‖F‖∞

> |ψ(ω0)|n(1− δ)

• (∗) Since Ω ⊃ D, we have |ψ(ω)| < |ω| for ω ∈ D.

• Note. The sequence {(Pn ◦ ϕ)n ◦ ψ}n∈N converges on the whole of Ω.

• Weighted bounds are covered too, in the paper.

• The method is independent of ω0 and n but is optimal at any ω0 and any n.
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Improvement of convergence: Near zero

• Say the coe�icients of Pn(ω) are bounded by some c, ensuring errors ∼ cωn.
Then the errors in the optimal method are ∼ ψ′(0)nωnc; we note that 0 <
ψ′(0) < 1 is decreasing with the size of Ω. As an example, for Ω[Ĉ\((0),−1,∞)],
the Riemann surface of classical special functions and their perturbationsψ′(0) =
1/16; it is rarely > 1/2.

Near singularities, that is near ∂Ω

• Accuracy improvement is especially dramatic near singularities of F located
on ∂Ω. For instance, for Ω[Ĉ \ ((0),−1,∞)], ψ(−1 + 3 · 10−25) = 0.9 and
ψ(1012i) = 0.9i meaning with n terms one can calculate these functions very
far out, or very close to the singular point 1, with accuracy 0.9n.
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Application: exploring Riemann surfaces, Painlevé PI

Riemann surface and singularities for PI

√ log

1

√
√log

1

√

-3 -2 -1 1 2 30

Figure: Borel plane ΩZ of PI: universal covering of C \ {(0),N,−N}.

Theorem (OC, G Dunne, CMP ’22; new uniformization method)

ΩZ is uniformized by ψ = ϕ−1, where ϕ = 1
2πi ln(1− q−1), with q the elliptic

nome function.
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The Riemann surface of Painlevé PI mapped to D

Figure: |(P200◦ϕ)200| of P1 plo�ed on a circle of radius 0.99, parametrized by t ∈ [0, 1].
We see singularities from many sheets.
–Notice the thick lines (the thickness decreases with the distance to ∂D): these are
two exponential singularities. The exponential nature is clear in the ”large n” empir-
ical asymptotics of the coe�icients of P200.
–Exponential singularities only exist when the sheet index → ∞. We see in-
finitely deep on Ω, and uniformization may be the only way to extract this informa-
tion from P200.
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Application: Global reconstruction in the physical domain

-15 -10 -5 5
Re[x]

-10
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Figure: The tritronquée solution of P1 reconstructed from P200, Borel transformed from its
divergent expansion as x → +∞. There is a 2π/5 wedge of poles (about 66 of which are
recovered with high accuracy), and in its complement y is analytic.

• The position x1 of the first pole and the “energy” constant h1 at x1 are important in
applications, but not (yet?) known in closed form. Best existing numerical methods
provided some 16 digits of accuracy. We get 66 digits of accuracy,

x1 = −2.38416876956881663929914585244876719041040881473785051267725...

h1 = 0.0621357392261776408964901416400624601977407713738296636635333...

The accuracy is roughly preserved throughout the analyticity sector.
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Thank you !
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G.A. Edgar, Transseries for Beginners, Real Anal. Exchange 35 (2) 253 - 310, 2009/2010.
h�p://www.math.ohio-state.edu/∼ edgar/WG W08/edgar/transseries.pdf

T. Kawai and Y. Takei, Advances in Mathematics, 203, 2,pp. 636�672 (2006).

D.A. Lutz, M. Miyake and R. Sch afke, Nagoya Math. J. 154, 1, (1999).

J. Martinet and J-P. Ramis, Annales de l�Institut Henri Poincaré(A) Physique théorique,
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