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In this talk, I will explain work with Davide Gaiotto in which we
aim to understand in terms of quantum field theory the picture
developed in

P. Etinghof E. Frenkel, and D. Kazhdan, “An Analytic Version Of
The Langlands Correspondence For Complex Curves,”
arXiv:1908.09677.

Some earlier developments: J. Teschner, “Quantization Conditions
Of The Quantum Hitchin System and the Real Geometric
Langlands Correspondence,” arXiv:1707.07873, among others.



In the gauge theory approach (A. Kapustin and EW,
arXiv:hep-th/0604151), the starting point for geometric Langlands
is N = 4 super Yang-Mills theory in four dimensions with gauge
group G , or Langlands-GNO dual group G∨. The theory based on
G has a “gauge coupling constant” e and topological angle θ,
which combine to a complex parameter

τ =
θ

2π
+

4πi

e2
.

There is an elementary symmetry τ ∼= τ + 1. The theory based on
G∨ has an analogous parameter τ∨, also with an elementary
symmetry τ∨ ∼= τ∨ + 1. The claim of “electric-magnetic duality,”
whose earliest version goes back to C. Montonen and D. Olive
(1977), is that the theories based on G and on G∨ are equivalent
under

τ∨ =
−1

ngτ
.

(ng = 1, 2, or 3 depending on G .)



This isn’t particularly a statement about geometric Langlands, and
people studying it are usually studying questions that have no
obvious relation to geometric Langlands. However, we can
specialize to the situation that leads to geometric Langlands. First,
we consider a “topological twist” that leads to a CP1 family of
topological field theories, parametrized say by complex parameters
Ψ or Ψ∨. If we study the whole family, then the equivalence under
Ψ∨ = −1/ngΨ (and Ψ→ Ψ + 1, Ψ∨ → Ψ∨ + 1) becomes the
duality of “quantum geometric Langlands.” However, today we
will consider the basic geometric Langlands duality betwen Ψ = 0
for G (“the A-model”) and Ψ∨ =∞ for G∨ (“the B-model”).



In general, quantum field theory in dimension d associates a
number to a d-manifold, a vector space (“the space of physical
states”) to a d − 1-manifold, and a category (“the category of
boundary conditions”) to a d − 2-manifold. In the present context,
since we keep the oriented two-manifold C fixed and only consider
four-manifolds of the form Σ× C (where Σ is another
two-manifold), we define a category of boundary conditions that
depends on C . It is convenient to draw two-dimensional pictures in
which we only exhibit Σ. If Σ has a boundary, then to formulate
quantum field theory on Σ we need to specify a boundary condition



Boundary conditions make a category – given two boundary
conditions B1, B2, Hom(B1,B2) is the vector space that the
quantum field theory assigns to this picture

(Physicists usually don’t use this terminology.)



With this definition, Hom(B,B) is an algebra for every B

and moreover Hom(B,B′) is a left Hom(B′,B′) module, etc.



So electric-magnetic duality will give an isomorphism between the
category C associated to C in the G theory at Ψ = 0 and the
category C∨ associated to C in the G∨ theory at Ψ∨ =∞. In
addition, there is a natural mapping between certain natural
functors on C and on C∨. These functors come from what
physicists call “line operators.” In a quantum field theory defined
on a manifold M, a line operator is some sort of modification of the
definition of the theory along an embedded one-manifold K ⊂ M.
The natural line operators at Ψ =∞ are what physicists call
“Wilson operators” (the holonomy of a connection, interpreted as
an operator in quantum field theory) and the natural line operators
at Ψ = 0 are what physicists call “’t Hooft operators.” In physics,
Wilson and ’t Hooft operators are usually used in analyzing the
confinement of quarks in atomic nuclei – and other subtleties
involving the “universality classes” of quantum field theories.



But for us, a line operator is a functor from the category of
boundary conditions to itself. We can understand that statement
from this picture:

The point in a) is just that a line operator T that runs along a
boundary with some boundary condition B makes a new boundary
condition TB. This explains how T acts on objects of the
category. Its action on morphisms in the category is shown in b).



I’ve been drawing pictures in two dimensions, but there are two
more dimensions not drawn and T really depends on the choice of
a point p ∈ C .

Such pictures make it obvious that the line operators T (p), T (p′),
for p, p′ ∈ C commute

The picture describes T (p′)T (p)B, but for p 6= p′, we can move
the two line operators through each other without any singularity,
so T (p)T (p′)B = T (p′)T (p)B.



So the two dual categories C and C∨ are equipped with dual
families T (p) and W (p) of functors, parametrized by the choice of
p ∈ C (and some other data) and commuting at distinct points.
T (p) corresponds to the usual Hecke functors of geometric
Langlands, while W (p) corresponds to its dual in the usual
geometric Langlands duality. Since these functors depend on more
data (a representation R of G∨), one can also consider the
composition TR(p)TR′(p) of Hecke functors at the same point p
but associated to possibly different representations of G∨. They
commute, but a little less obviously. The duality says that the
algebra of compositions TR(p)TR′(p) of Hecke operators at the
same point is the same as the corresponding algebra of Wilson
operators WR(p)WR′(p), which (on elementary grounds) is the
tensor algebra of representations of G∨:

WR(p)WR′(p) = WR⊗R′(p),

where WR⊗R′(p) can be expanded as a sum of irreducibles. (The
fact that the decomposition of the T ’s matches that of the W ’s is
known as the geometric Satake correspondence.)



To go into a little more detail, I want to introduce a useful
language for formulating a simplified version of geometric
Langlands duality. Let MH(G ,C ) or just MH(G ) be the moduli
space of G -Higgs bundles on C . As shown by Hitchin, it is a
hyper-Kahler manifold. In one complex structure, I , it parametrizes
Higgs bundles over C . In another complex structure, namely J, it
parametrizes flat GC bundles over C . I , J, and K = IJ act as the
usual unit quaterions (IJ + JI = 0, etc.). There are also the
corresponding three Kahler forms ωI , ωJ , and ωK .



Geometric Langlands duality can be understood for many purposes
as a mirror symmetry between the A-model of MH(G ) in
symplectic structure ωK and the B-model of MH(G∨) in complex
structure J. (This instance of mirror symmetry was first studied
mathematically by Hausel and Thaddeus (2002).) One can
definitely ask questions for which the two-dimensional picture is
inadequate. Mathematicians describe this by saying that the theory
should be formulated on the stack of G -bundles, BunG , not on a
finite-dimensional moduli space. Physicists describe it by saying
that the correct formulation is as a duality of four-dimensional
theories. (Four is the minimum: there is a six-dimensional
formulation that explains some things better, but that is not for
today.) These two descriptions are not as different as you may
think, since Atiyah and Bott showed in 1981 that a model of BunG
is the space of all connections on a fixed smooth G -bundle E → C ;
so four-dimensional gauge theory is a two-dimensional theory with
target BunG .



I want to use the two-dimensional description of geometric
Langlands duality as mirror symmetry between MH(G ) and
MH(G∨) to explain why the category that appears on the
“automorphic” side of the duality is a category of D-modules on
BunG . The most familiar branes in the A-model or Fukaya
category of a real symplectic manifold Y are “Lagrangian branes,”
supported on a Lagrangian submanifold L. However, Kapustin and
Orlov discovered (2001) that in general one can also define
“coisotropic A-branes” that are supported on a coisotropic
submanifold R ⊂ Y that is above the middle dimension. The
construction of coistropic A-branes is delicate in general, but the
simplest case is the case relevant to geometric Langlands. That is
the case that Y is actually a complex symplectic manifold with
complex structure I and holomorphic symplectic structure
Ω = ωJ + iωK , where one views Y as a real symplectic manifold
with symplectic form ω = ωK = ImΩ, and one takes the “B-field”
of the 2-dimensional theory to be B = ReΩ = ωJ . (In our paper in
2006, Kapustin and I used a variant of this that differed by a
“B-field gauge transformation.”)



With this data one can construct a “canonical coisotropic A-brane”
Bcc, whose support is all of Y . It has the property that, roughly,
Hom(Bcc,Bcc) is related to deformation quantization of the algebra
of holomorphic functions on Y . More specifically, one can show
that if Y = T ∗W is a cotangent bundle of some other complex
manifold W with the standard complex symplectic structure, then
Hom(Bcc,Bcc) is the sheaf of holomorphic differential operators on
W , acting on K 1/2 →W (K being the canonical bundle of W ).



In the case of geometric Langlands, we take Y to be MH(G ), the
moduli space of G -Higgs bundles on C . This is birational to
T ∗M(G ) where M(G ) is the moduli space of holomorphic
G -bundles on C . So A = Hom(Bcc,Bcc) is the sheaf of
holomorphic differential operators on M(G ). If B is any other
brane, then Hom(B,Bcc) is going to be a module for
A = Hom(Bcc,Bcc). In other words, the category on the
“automorphic” side of the geometric Langlands duality is a
category of, roughly speaking, D-modules on M(G ).



Mathematically, it is important to work with D-modules on the
stack BunG , not on a finite-dimensional moduli space M(G ).
Physically, what that means is that it is important that a version of
Bcc can be defined directly in four dimensions, not only after
reducing to a two-dimensional description. Kapustin and I had a
version of that in our original paper, but D. Gaiotto and I found an
improved version a few years later (“Knot Invariants From
Four-Dimensional Gauge Theory,” 2010). That also enabled us to
answer a question that had been unclear and will be important
later in this lecture: what is the dual of Bcc? Bcc is an A-brane of
MH(G ) so its dual will be a B-brane ofMH(G∨) – in other words,
a coherent sheaf, or a complex of coherent sheaves, on MH(G∨).
To be more exact, what is the right sheaf was clear mathematically
from the work of Beilinson and Drinfeld: the D-module
corresponding to Bcc itself is the sheaf of differential operators on
M(G ), and its dual is the structure sheaf of the variety of opers, a
very special Lagrangian submanifold Lop ⊂MH(G∨). A gauge
theory explanation of that fact was initially unclear, at least to me.



In summary the main ideas in the gauge theory/geometric
Langlands correspondence are

I electric-magnetic duality G ↔ G∨ of supersymmetric gauge
theory in four dimensions

I “twisting” to make a dual pair of topological field theories

I compactification to two dimensions on a Riemann surface C

I the dual theories have dual sets of line operators, with ’t
Hooft operators that are related to geometric Hecke
transformations, and their dual Wilson operators

I on one side of the duality there is a distinguished brane Bcc,
establishing a map from A-branes to D-modules on BunG

I on the other side, one is studying B-branes on MH(G∨) in
the complex structure in which it parametrizes flat bundles.



This story so far involves deformation quantization, not quantization. Let
me pause to underline the difference, with the concrete example of a
two-sphere

x2 + y2 + z2 = j2

viewed as a symplectic manifold with its usual rotation-invariant
symplectic form (ω = dxdy/z). In deformation quantization, we start
with the commutative algebra of functions C[x , y , z ] and we want to
deform it to a noncommutative algebra. In general, one specifies that the
leading noncommutative deformation should agree with the Poisson
bracket, and asks if a family of associative algebras over C[~], or possibly
C[[~]], exists with that property. In the present case, we can just write
down the answer, which is given by the su(2) Lie algebra

[x , y ] = −i~z , [y , z ] = −i~x , [z , x ] = −i~y .

This makes sense for any value of j2 and is not quantization.
Quantization means finding a Hilbert space H (“of the appropriate size”)
that the algebra acts on. This does not exist for arbitrary j . To construct
H, one has to “quantize” the parameter j – set it to preferred values – at
which the Hilbert space exists. These special values correspond to the
angular momenta in the real world of electrons, atoms, molecules, etc. It
is because of this last step that the subject is called “quantization.”



S. Gukov and I (“Branes and Quantization,” 2008) asked whether
the A-model in this general setup can describe quantization, and
not just deformation quantization. The answer is yes, under certain
conditions. Recall that in general, we are discussing a complex
symplectic manifold Y (in geometric Langlands, Y is the moduli
space of Higgs bundles) viewed as a real symplectic manifold with
symplectic form ω = ImΩ. Let us discuss Lagrangian A-branes,
that is branes supported on a submanifold L ⊂ Y that is
Lagrangian for ImΩ. In many of the examples that are important
in geometric Langlands, L is actually a complex Lagrangian
submanifold, that is, it is Lagrangian for Ω, not just for ImΩ. (For
example, the dual of a skyscraper sheaf on the G∨ side –
supported on a point in MH(G∨) – is a Lagrangian brane
supported on a fiber of the Hitchin fibration of Y =MH(G ). This
is a complex Lagrangian submanifold. That happened because a
point in MH(G∨) is “hyperholomorphic.”) But in general L need
not be Lagrangian for Ω (just as a coherent sheaf on MH(G∨)
need not be hyperholomorphic).



Gukov and I considered the opposite case of an A-brane B whose
support M is Lagrangian for ImΩ – as it must be – but is
symplectic for ReΩ. We argued that in this case H = Hom(B,Bcc)
represents a quantization of M with symplectic structure ReΩ. For
example, if Y is an affine variety, then the holomorphic functions
on Y , which are deformation quantized to get A = Hom(Bcc,Bcc)
can be regarded as analytic continuations of certain real analytic
functions on M. There are enough of them to be a reasonable
quantum-deformed algebra of observables. H = Hom(B,Bcc) is an
A-module which one can show has appropriate properties to be a
quantization of M. A formal argument reduces the description of
H to the problem of quantizing M.



I have actually omitted so far a key point: what structure is needed
so that H = Hom(B,Bcc) is a Hilbert space, not just a vector
space? In general, if B1,B2 are any two branes, there is a
nondegenerate bilinear (not hermitian) pairing
Hom(B1,B2)⊗Hom(B2,B1)→ C. To get a hermitian inner
product on Hom(B1,B2) is therefore the same as finding an
antilinear map from Hom(B2,B1) to Hom(B1,B2). Gukov and I
showed that there is such an antilinear map, which I will call Θτ , if
there is an antiholomorphic map τ : Y → Y with M as a
component of its fixed point set. I won’t explain the definition of
Θτ but I will explain why one should expect the existence of such a
τ to be the right criterion. If holomorphic functions on Y act on H
and H is a Hilbert space, one will have a notion of which
holomorphic functions on Y are hermitian. Existence of τ gives a
natural notion: a holomorphic function on Y is “real” if it is real
when restricted to M.



Given τ , the hermitian product on Hom(B1,B2) for any pair of
τ -invariant branes is defined by

〈ψ, χ〉 = (Θτψ, χ)

where Θτ is the antillinear mapping that is defined using τ , and
( , ) is the bilinear pairing of the A-model. This pairing is always
nondegenerate but in this generality it is not always positive
definite. For the more specific case relevant to quantization, the
best we can say is that the pairing on Hom(B,Bcc) is positive
definite if one is sufficiently close to a classical limit.



In this approach to quantization, if one is given a real symplectic
manifold M that one wants to quantize, one has to find a
complexification of M to a complex symplectic manifold Y with
some appropriate properties, and then one can use the A-model of
Y to quantize M. This might be compared loosely to geometric
quantization, which is the closest there has been to a systematic
approach to quantization. In geometric quantization, to quantize
M, one has to find a “polarization” of M (roughly a maximal set
of Poisson-commuting variables). Given a polarization, geometric
quantization gives a recipe of quantization. Geometric
quantization – or quantization by branes – can give good results if
there is a natural polarization – or a natural choice of
complexification – for the problem at hand.



A limitation of my paper with Gukov is that we did not understand
very much about how to compare brane quantization to geometric
quantization. Gaiotto and I were motivated in the last few months
to look at this more closely as background to understanding the
work of Etinghof, Frenkel, and Kazhdan that I mentioned at the
beginning. At some level of precision, we’ve been able to compare
quantization by branes to geometric quantization, in the following
sense: if M has a polarization P in the sense of geometric
quantization, and a complexification Y that is suitable for
quantization by branes, and if P analytically continues to what we
call a holomorphic polarization of Y , then the two methods to
quantize M agree: that is, geometric quantization of M using P is
equivalent to brane quantization of M using Y . (For brevity, I’ve
oversimplified what is true in the case of a complex polarization.)



All this is by way of preparation to talk about the work of
Etinghof, Frenkel, and Kazhdan (EFK) that I mentioned at the
start. They considered a Hilbert space H of L2 functions (or
better, half-densities) on M(G ) (the moduli space of stable
holomorphic G -bundles over C ). They constructed operators on H
that are related to the usual constructions of geometric Langlands,
and found interesting duality theorems and conjectures concerning
the action of these operators. As we proceed with the physical
setup, we will see what those statements might be.



In geometric quantization, one would understand the L2 functions
on M(G ) in terms of quantization of the cotangent bundle
T ∗M(G ) ∼=MH(G ). In other words, the Hilbert space of EFK is
what one gets if takes the Higgs bundle moduli space MH(G ) with
real symplectic structure ω = ImΩ, and quantizes it via geometric
quantization, using the fact that it is a cotangent bundle,
MH(G ) ∼= T ∗M(G ).



On the other hand, if we are going to get anywhere in terms of
predictions from duality, we need to understand quantization of
MH(G ) via branes. For this, the first step is to pick a
complexification of MH(G ). Any complex manifold Y , viewed as a
real manifold, has a canonical complexification, namely
Ŷ = Y1 × Y2, where Y1 and Y2 are two copies of Y , with opposite
complex structures I and −I . Therefore, the involution τ of Û that
exchanges the two factors of Y is antiholomorphic. Its fixed point
set is the diagonal Y ⊂ Y1 × Y2. Since the complex structures on
the two factors are opposite, we can take the holomorphic
symplectic form of Ŷ to be Ω̂ = 1

2Ω� 1
2Ω, i.e. 1

2Ω on Y1 and 1
2Ω

on Y2. Then the restriction of Ω̂ to the diagonal Y is ReΩ, in
other words Y is Lagrangian for ImΩ and symplectic for ReΩ. So
this is the situation in which quantization of Y , using a Lagrangian
brane B supported on Y , makes sense. Moreover, the real
polarization of Y that leads to the Hilbert space studied by EFK
does analytically continue to a holomorphic polarization of Ŷ .
Hence the Hilbert space they study is the one that arises in brane
quantization.



However, we have to ask what are the observables in brane
quantization. Let us recall Hitchin’s integrable system. The Higgs
bundle moduli space has a Hitchin fibration π :MH → B, where
B ∼= Cn for some n. The linear functions on B are Hitchin’s
commuting Hamiltonians. Classically the global holomorphic
functions on MH are just the pullbacks of functions on B, i.e. the
algebra A0 of holomorphic functions on MH is the algebra of
polymomial functions of the Hitchin Hamiltonians.



What are the quantum observables in brane quantization of Y ?
For brane quantization, we define the canonical coisotropic brane
B̂cc of Ŷ = Y1 × Y2. It is just a product B̂cc = Bcc,1 × Bcc,2 of
canonical coisotropic branes on the two factors Y1 and Y2. So the
algebra that acts on the quantization of Y is
Hom(B̂cc, B̂cc) = A⊗A, where A = Hom(Bcc,1,Bcc,1) and
A = Hom(Bcc,2,Bcc,2) are quantum-deformed versions of A0 and
A0, the holomorphic and antiholomorphic functions on Y .
However, for Y =MH(G ), one can show that the
quantum-deformed rings A and A are still commutative. This is
due to Hitchin for SL2 and to Beilinson and Drinfeld in general.
The quantum deformed objects are the commuting differential
operators that are the quantization of Hitchin’s classical
commuting Hamiltonians. The four-dimensional gauge theory
picture gives another explanation of the fact that the
quantum-deformed ring is still commutative, similar to the
explanation I gave of the fact that Hecke functors at distinct
points p, p′ ∈ C commute.



We want to understand the action of Hom(B̂cc, B̂cc) = A⊗A on
H = Hom(B, B̂cc) = L2(M(G )). First of all, there is no mystery
about the fact that A⊗A does act on L2(M(G )). This is just the
statement that holomorphic and antiholomorphic differential
operators on M(G ) can act on functions on M(G ). Holomorphic
operators trivially commute with antiholomorphic ones, and the
algebras of holomorphic or antiholomorphic differential operators
are separately commutative. But what are the joint eigenvalues of
Hitchin’s Hamiltonians and their complex conjugates? To answer
this question, we want to apply duality.



To apply duality to H = Hom(B, B̂cc) where B̂cc = Bcc,1 × Bcc,2,
naively we need to understand the duals of the three branes
involved, namely Bcc,1, Bcc,2, and B. Bcc,1 is the brane associated
to deformation quantization of the ring of holomorphic functions,
and as I explained before, its dual is the structure sheaf of the
variety of opers, Lop ⊂MH(G∨). An oper is a flat bundle whose
holomorphic structure obeys a certain condition. Bcc,2 is the brane
associate to deformation quantization of the ring of
antiholomorphic functions. So its dual is the structure sheaf of
Lop, the Lagrangian submanifold that parametrizes flat bundles
whose antiholomorphic structure obeys the oper condition. What
about the brane B that is supported on the diagonal?



There is an “unfolding trick” that shows we do not have to worry
about dualizing the diagonal:

In the unfolded version of the problem, there is just a single copy
of MH and the Hilbert space is H = Hom(Bcc, B̃cc) where B̃cc is a
conjugate version of Bcc adapted to the opposite complex structure
on MH .



So we just dualize Bcc and B̃cc to get Lop and Lop, that is the
varieties in MH(G∨) that parametrize flat G∨ bundles over C
whose holomorphic and antiholomorphic structures, respectively,
are opers. A becomes Hom(Lop, Lop), which is just the algebra of
holomorphic functions on Lop, and A becomes Hom(Lop, Lop),
which is the algebra of holomorphic functions on Lop.



The two dual pictures are here:

The spectrum of A⊗A is Hom(B̃cc,Bcc) = Hom(Lop, Lop). Lop
and Lop are Lagrangian branes, so Hom(Lop, Lop) is an intersection
or Hom space in (a version of) Floer cohomology.



I want to elaborate on this a little since the assertion that both Lop
and Lop are complex Lagrangian submanifolds of MH(G∨) in the
same complex structure on the latter may be confusing. The G∨

description is by a B-model of MH(G∨), in the complex structure
in which G∨ parametrizes flat G∨C bundles over C . The complex
structure just comes from the fact that G∨C is a complex Lie group.
For example, traces of holonomies are holomorphic functions on
MH(G∨) in this complex structure. A flat bundle has both a
holomorphic structure and an antiholomorphic structure, both of
which vary holomorphically. So in fact there is a holomorphic map
MH(G ,C )→ BunG (C )× BunG (C ), where C is C with opposite
complex structure. A flat bundle E (for SL2, say) is an oper
holomorphically if holomorphically it is a nontrivial extension

0→ K 1/2 → E → K−1/2 → 0

and it is an oper antiholomorphically if antiholomorphically it is a
nontrivial extension

0→ K
1/2 → E → K

−1/2 → 0.



By the method I explained before using an antiholomorphic
involution τ , Hom(B̃cc,Bcc) carries a hermitian inner product,
which we expect to be positive as it corresponds to the
quantization of a cotangent bundle. The dual Hom(Lop, Lop)
likewise carries a nondegenerate inner product which is defined in a
similar way using an antiholomorphic involution τ∨ of MH(G∨).
This nondegenerate inner product can be defined for any B-branes
Lop, Lop that are exchanged by τ∨. However, for generic B-branes
this inner product is not positive-definite. Conditions that make
the hermitian form on Hom(Lop, Lop) positive-definite were
formulated by EFK, who showed that these conditions are satisfied
for GL1 (by a direct but surprisingly non-trivial computation) and
for SL2 (by a theorem of Faltings).



Consider a point x ∈ Lop ∩ Lop, corresponding to a flat bundle E
that is an oper both holomorphically and antiholomorphically. The
antiholomorphic involution τ∨ that is used to define the hermitian
structure on the G∨ side will map E to the complex conjugate flat
bundle E , which is also an oper both holomorphically and
antiholomorphically. If E is not isomorphic to E , then they are
both null vectors for the hermitian form on Hom(Lop, Lop), which
in that case is not positive-definite. But the duality predicts that it
should be positive-definite, so we expect that, as conjectured by
EFK and proved in some cases, E is always isomorphic to E . Thus,
the claim is that the flat GC bundles that are opers both
holomorphically and antiholomorphically are actually real, that is
their structure group reduces to a real form of G . (I don’t know if
it is always the split real form.)



Assuming the intersection points are all real in that sense,
Hom(Lop, Lop) is positive-definite if and only if all intersection
points of Lop and Lop are always transverse. This statement is also
among the results/conjectures of EFK. Note that if a flat bundle E
is an oper holomorphically and is also real, then it is also an oper
antiholomorphically. Bundles with this property are what EFK call
real opers.



Thus assuming the duality is true and the hermitian form is
positive-definite, the joint spectrum of A and A corresponds to
real opers. Let me recall that according to Beilinson and Drinfeld,
an element x of A (1) is a holomorphic differential operator on
BunG and (2) corresponds to a holomorphic function fx on Lop.
Similarly an element x ′ of A (1) is an antiholomorphic differential
operator on BunG and (2) corresponds to a holomorphic function
fx ′ on Lop. So an intersection point p of Lop and Lop determines a
pair of eigenvaluues of the differential operators x , x ′, namely fx(p)
and fx ′(p). This is the proposal for the joint spectrum of Hitchin’s
quantized Hamiltonians.



EFK also introduced Hecke operators as operators on the Hilbert
space H that arises in quantization of MH(G ) as a real symplectic
manifold. I explained already that line operators of the
four-dimensional gauge theory can be used to define functors on
the category of branes (boundary conditions). Moreover ’t Hooft
and Wilson line operators correspond to dual pairs of functors on
the A and B model categories.



The same line operators represent operators on the quantum
Hilbert space. I’ve tried to explain this with the following picture:

In a), I show the old story of a line operator T as a functor on the
category of branes. In b), the same line operator is used to make
an operator T : H = H where H = Hom(B′,B) (for some branes
B,B ′). The picture in b) raises the question of what is happening
at the corner where T ends on a brane B. The point of c) is to
explain that the corner represents an element of Hom(B,TB). So
actually to define the operator T : Hom(B ′,B) in a), one needs
“junctions” α ∈ Hom(B,TB) and β ∈ Hom(TB′,B′).



The argument that showed commutativity of the functors TR(p),
TR′(p′) corresponding to different points p, p′ ∈ C (and
representations R,R ′ of the dual group) goes over immediately to
show that the operators TR(p), TR′(p′) for different points
p, p′ ∈ C commute. Because they live at different points in C ,
they can be moved up and down past each other in this picture
without singularity:

Moreover as in the discussion of line operators as functors, we can
set p = p′. The algebra of Hecke operators TR(p)TR′(p) is the
same as the corresponding algebra of Hecke functors, except that
when one mutliplies Hecke operators, one has to also compose the
morphisms that were used to define the corners.



A similar argument shows that Hecke operators TR(p) commute
with the quantized version of Hitchin’s holomorphic (or
antiholomorphic) Hamiltonians. A two-dimensional picture makes
it look like there could be a problem in moving a Hamiltonian
x ∈ A past a Hecke operator TR(p), but in four dimensions it is
obvious that there is no problem:



Finally, we can ask what are the predictions of the duality for the
eigenvalues of the Hecke operators. To answer this, we start on the
G∨ side. We are going to find the eigenvalues of a Wilson operator
WR(p) acting on Hom(Lop, Lop), and then the duality will predict
that the eigenvalues of of the Hecke operator TR(p) are the same.
Also, we will find what kind of data is needed for the “corners”
that make WR(p) into an operator; again, the duality predicts that
the same data is needed to define the Hecke operator TR(p).



Given a G∨ bundle E with connection over Σ× C , and a
representation R of G∨, we form the associated bundle
ER = E ×G∨

C
R, which also comes with a connection. WR(γ), for a

path γ in Σ× C , is defined by parallel transport of the connection
on ER along γ. For the present application, we fix a point p ∈ C
and two points a, b on the right and left boundaries of Σ, and a
path in Σ× p from a× p to b × p:

If ER,a×p and ER,b×p are the fibers of ER at a× p and b × p, then
parallel transport defines, for each connection, a linear
transformation WR(p) : ER,a×p → ER,b×p or equivalently an
element

WR,p :∈ Hom(ER,a×p ⊗ ER′,b×p,C),

where R ′ is the dual representation to R.



A quantum operator is going to come from something that is a
complex valued function of connnections. We do not have that
yet; what we have is that for each connection we have defined

WR,p ∈ Hom(ER,a×p ⊗ ER′,b×p,C).

To get an operator, we need to supply elements v ∈ ER,a×p,
w ∈ ER′,b×p and then WR,p(v ⊗ w) is the function of connections
whose quantization will be an operator (an easy one to diagonalize
and evaluate, as we will see). In order to avoid unnecessary details,
I will state the following for the case that G∨ = SL2 and R = R ′ is
the two-dimensional representation, but there is a straightforward
generalization to any G∨ and R.



In this picture,

the boundary condition on the right boundary is that the G∨

bundle E , restricted to the right boundary, is an antiholomorphic
oper. This means that there is a nonsplit exact sequence

0→ K
1/2 j→ ER → K

−1/2 → 0

where K is the canonical bundle of C (C with opposite complex

structure) and K
1/2

is a square root of it. (We pick here a square
root, but as noted by EFK on the dual side, the choice cancels out

in a moment.) So if we pick a vector v ∈ K
1/2
p (the fiber of K

1/2

at p) then this gives a vector j(v) ∈ ER,a×p.



Similarly on the left boundary

the boundary condition says that E is a holomorphic oper,
implying that there is a nonsplit exact sequence

0→ K 1/2 j→ ER′ → K−1/2.

So we pick w ∈ K
1/2
p and this gives us j(w) ∈ ER′,b×p. In other

words, the “corners” correspond to v ∈ K
1/2

and w ∈ K 1/2. Once
they are picked, we define

ŴR,p = WR,p(j(v)⊗ j(w))

and this is the complex-valued function of connections that we will
interpret as a quantum operator.



This step is trivial, because in the B-model,

one can actually assume that the connection is pulled back from
C . ŴR,p is just the natural dual pairing ( , ) : ER,p ⊗ ER′,p → C,
and therefore its value at a given real oper is simply

(j(v), j(w)).

It is convenient to write this formula in this way in terms of v ,w ,

but it actually only depends on v ⊗ w ∈ K 1/2 ⊗ K
1/2

= |K |, and
thus in particular as observed by EFK there is no dependence on a
choice of spin structure.



The duality then predicts that also on the dual side, the definition

of T (p) as an operator requires “corners” v ,w ∈ K
1/2
p , K

1/2
p . This

is true, as shown by EFK using an algebro-geometric formula. The
duality further predicts that the eigenvalues of the resulting
operator are what we found on the G∨ side: they are

(j(v), j(w))

for all the possible real opers.

(As a result of a recent lecture by E. Frenkel, I learned of a slight
refinement. Because SL2 has a nontrivial center {±1}, parallel
transport from left to right is uniquely determined only up to sign.
Hence actually the eigenvalues are

±(j(v), j(w))

with both signs occurring.)


