Resurgence analysis of the WRT-TQFT

Jørgen Ellegaard Andersen

Centre for Quantum Mathematics Danish Institute for Advanced Studies Odense, Denmark

Research supported in part by the ERC-Synergy Grant "ReNewQuantum".

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

The WRT Invariant $\tau_k(M, K)$

Reshetikhin and Turaev defined for each $k \in \mathbb{N}$ a TQFT τ_k . For a closed 3-mfd M with a knot K, colored by a representation λ we have the WRT invariant

$$\tau_k(M,K,\lambda) \in \mathbb{C}$$

which is a model for Witten's $\mathrm{SU}(2)$ quantum Chern-Simons theory

$$Z_k(M, K, \lambda) = \int_{\mathcal{A}_{\mathrm{SU}(2)}/\mathcal{G}_{\mathrm{SU}(2)}} \exp\left(\frac{ki}{4\pi} \operatorname{CS}(a)\right) \operatorname{tr} \lambda\left(\operatorname{Hol}_K(a)\right) \mathcal{D}a.$$

The WRT-TQFT is a full 2 + 1 dimensional TQFT, which can be studied using modular tensor categories, conformal field theory or quantization of moduli spaces of flat connections on surfaces with labeled punctures.

Main conjectures concerning the WRT-TQFT:

• The asymptotic expansion conjecture: relating τ_k to classical Chern-Simons theory.

$$\tau_k(M) \sim_{k \to \infty} \sum_{\theta \in \mathrm{CS}_{\mathrm{SU}(2)}} \exp(2\pi i k \theta) k^{d_\theta} b_\theta(1 + Z_\theta(k^{-1})).$$

where
$$Z_{\theta}(k^{-1}) = c_{\theta}^{1}k^{-1} + c_{\theta}^{2}k^{-2} + \dots$$

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

(日本)(日本)(日本)

Conjectures about τ_k and resurgence as a Rosetta stone

Main conjectures concerning the WRT-TQFT:

- The asymptotic expansion conjecture: relating τ_k to classical Chern-Simons theory.
- 2 The volume conjecture: relating τ_k to hyperbolic geometry. **Kashaev's** original volume conjecture (in the MM formulation):

$$\lim_{k \to \infty} \frac{1}{k} \log(\frac{|\tau_k(S^3, K, \lambda = k + 2)|}{|\tau_k(S^3, U, \lambda = k + 2)|}) = \frac{1}{2\pi} \text{Vol}(S^3 - K)$$

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

Conjectures about τ_k and resurgence as a Rosetta stone

Main conjectures concerning the WRT-TQFT:

- The asymptotic expansion conjecture: relating τ_k to classical Chern-Simons theory.
- 2 The volume conjecture: relating τ_k to hyperbolic geometry.
- Integrality and categorification of τ_k : The GPPV invariant of a 3-mfd. M (defined as a string theory BPS index) with a spin^c structure a is an integer power series

 $\hat{\mathbf{Z}}_a(M;q) \in \mathbb{Z}[[q]]_0.$

Conjecture: there exists a homology theory $H_{\bullet,\bullet}(M;a)$ s.t.

$$\hat{\mathbf{Z}}_a(M;q) = \sum_{i,j} (-1)^i q^j \dim \left(\mathbf{H}_{i,j}(M;a)\right).$$

Conjectures about τ_k and resurgence as a Rosetta stone

Main conjectures concerning the WRT-TQFT:

- The asymptotic expansion conjecture: relating τ_k to classical Chern-Simons theory.
- 2) The volume conjecture: relating au_k to hyperbolic geometry.
- Integrality and categorification of τ_k : The GPPV invariant of a 3-mfd. M (defined as a string theory BPS index) with a spin^c structure a is an integer power series

$$\hat{\mathbf{Z}}_a(M;q) \in \mathbb{Z}[[q]]_0.$$

Conjecture: there exists a homology theory $H_{\bullet,\bullet}(M;a)$ s.t.

$$\hat{\mathbf{Z}}_a(M;q) = \sum_{i,j} (-1)^i q^j \dim \left(\mathbf{H}_{i,j}(M;a) \right).$$

The asymptotic expansion of the TQFT τ_k , the volume conjecture and $\hat{Z}_a(q)$ are connected via resurgence.

Start with:

The asymptotic expansion conjecture: relating τ_k to classical Chern-Simons theory.

$$\tau_k(M) \sim_{k \to \infty} \sum_{\theta \in \mathrm{CS}_{\mathrm{SU}(2)}} \exp(2\pi i k \theta) k^{d_\theta} b_\theta (1 + Z_\theta(k^{-1})).$$

where

$$Z_{\theta}(k^{-1}) = c_{\theta}^{1}k^{-1} + c_{\theta}^{2}k^{-2} + \dots$$

in general are divergent series.

Resummation of divergent power series

• **Divergent series**: In mathematical physics divergent series are common and many examples comes from path integrals.

イロン イヨン イヨン イヨン

Resummation of divergent power series

- **Divergent series**: In mathematical physics divergent series are common and many examples comes from path integrals.
- Problem: given a divergent power series

$$\varphi(z) \in z^{-1}\mathbb{C}[[z^{-1}]].$$

we want to construct a holomorphic function

$$\widehat{\varphi} \in \mathcal{O}(D)$$

having φ as an asymptotic expansion, i.e. $\forall m \in \mathbb{N}$

$$\widehat{\varphi}(z) = \varphi_0 z^{-1} + \dots + \varphi_m z^{-m-1} + O(z^{-m-2}).$$

• Borel-Laplace resummation is a solution to this problem.

The Borel transform ${\cal B}$

Definition 1

The Borel transform

$$\mathcal{B}: z^{-1}\mathbb{C}[[z^{-1}]] \to \mathbb{C}[[\zeta]]$$

is the $\mathbb C\text{-linear}$ extension of

$$\mathcal{B}(z^{-\alpha-1}) = \frac{\zeta^{\alpha}}{\Gamma(\alpha+1)} = \frac{\zeta^{\alpha}}{\alpha!}.$$

Here Γ is the Gamma function, which for $\operatorname{Re}(x) > 0$ is defined by

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} \,\mathrm{d}\, t.$$

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

イロト イヨト イヨト イヨト

The Borel transform ${\cal B}$ as the inverse of the Laplace transform ${\cal L}$

The Laplace transform *L*: Let *γ* ⊂ C be an oriented countour. Let *g* be a holomorphic function. Define

$$\mathcal{L}_{\gamma}(g)(z) = \int_{\gamma} \exp(-z \cdot \zeta) g(\zeta) \, \mathrm{d} \zeta.$$

Proposition 1

For all $m \in \mathbb{N}$ one has

$$\mathcal{L}_{\mathbb{R}_{+}} \circ \mathcal{B}(z^{-m-1}) = z^{-m-1},$$
$$\mathcal{B} \circ \mathcal{L}_{\mathbb{R}_{+}}(\zeta^{m}) = \zeta^{m}.$$

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

Borel-Laplace resummation $\varphi \mapsto \mathcal{L} \circ \mathcal{B}(\varphi)$

Proposition 2

Let $\varphi(z) \in z^{-1}\mathbb{C}[[z^{-1}]]$. Assume $\mathcal{B}(\varphi)(\zeta)$ extends to an analytic function of appropriate bound along $\gamma(\theta) = \exp(i\theta)\mathbb{R}_+$. Consider

$$\widehat{\varphi}(z) \stackrel{\text{def.}}{=} \mathcal{L}_{\gamma(\theta)} \circ \mathcal{B}(\varphi)(z) = \int_{\gamma(\theta)} e^{-\zeta z} \mathcal{B}(\varphi)(\zeta) \, \mathrm{d}\, \zeta.$$

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

(4回) (1日) (日)

Proposition 2

Let $\varphi(z) \in z^{-1}\mathbb{C}[[z^{-1}]]$. Assume $\mathcal{B}(\varphi)(\zeta)$ extends to an analytic function of appropriate bound along $\gamma(\theta) = \exp(i\theta)\mathbb{R}_+$. Consider

$$\widehat{\varphi}(z) \stackrel{\text{def.}}{=} \mathcal{L}_{\gamma(\theta)} \circ \mathcal{B}(\varphi)(z) = \int_{\gamma(\theta)} e^{-\zeta z} \mathcal{B}(\varphi)(\zeta) \, \mathrm{d}\, \zeta.$$

The function $\widehat{\varphi}(z)$ is analytic on $Re(z \exp(i\theta)) > 0$ and has $\varphi(z)$ as Poincaré asymptotic expansion

$$\widehat{\varphi}(z)\sim_{|z|\to\infty}\varphi(z)\in z^{-1}\mathbb{C}[[z^{-1}]].$$

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

・ 同 ト ・ ヨ ト ・ ヨ ト

Picard-Lefshetz theory and resurgence

• Picard-Lefshetz theory and resurgence: Let $f \in \mathcal{O}(\mathbb{C}^d)$, let $\omega \in \Omega^d_{\text{Hol}}(\mathbb{C}^d)$, let Δ be a PL-thimble and consider

$$I_{\Delta}(\lambda) = \int_{\Delta} \exp(-\lambda f(z)) \,\,\omega(z)$$

Think of the *t*-plane as the set of values of f with a discrete set of critical values (here $0, t_+, t_-$) with curves γ emanating from them, along which the exponential factor is decaying.

Illustration of a Picard-Lefschetz thimble $\Delta(\sigma, \gamma)$

Below we illustrate a Picard-Lefshetz thimble $\Delta(\sigma, \gamma)$ foliated by vanishing cycles $\sigma(t) \in H_*(f^{-1}(t), \mathbb{Z})$ which are parallel (w.r.t. the Gauss-Manin connection) along a curve $\gamma \subset Im(f)$

Figure: Thimble
$$\Delta(\sigma, \gamma)$$
 in $d = 2$.

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

(日) (コン (コン

Picard-Lefshetz theory and resurgence

Picard-Lefshetz theory and resurgence: Let $f \in \mathcal{O}(\mathbb{C}^d)$, let $\omega \in \Omega^d_{\operatorname{Hol}}(\mathbb{C}^d)$, let Δ be a PL-thimble and consider

$$I_{\Delta}(\lambda) = \int_{\Delta} \exp(-\lambda f(z)) \ \omega(z).$$

Let $\tilde{I}_\Delta\in\xi^{-1}\mathbb{C}[[\xi^{-1}]]$ be such that we have the asymptotic expansion

$$I_{\Delta}(\lambda) \sim \exp(-\lambda f(z_{\Delta}))\lambda^{d_{\Delta}}(1 + \tilde{I}_{\Delta}(\lambda^{-1})).$$

The aim of Écalle's theory of resurgence is to decode the information contained in the divergent series

$$\tilde{I}_{\Delta} \in \xi^{-1} \mathbb{C}[[\xi^{-1}]]$$

and determine the properties of the Borel resummation of them as meromorphic multi-value functions and in turn to recover from them the actual integrals $I_{\Delta}(\lambda)$.

Picard-Lefshetz theory and resurgence

In particular, when we turn the argument of the expansion parameter λ around, then the γ 's emanating from some critical point will hit some other critical point and at this point the corresponding I_Δ jumps to

$$\mathbf{I}_{\Delta} \mapsto \mathbf{I}_{\Delta} + n(\Delta, \Delta') \, \mathbf{I}_{\Delta'},$$

hence we see that

 $I_{\Delta'}$ resurges with a multiplicity factor $n(\Delta, \Delta')$ in I_{Δ} .

Écalle has developed his Alien calculus precisely to determine these jumping or wall crossing phenomenon directly from the divergent series \tilde{I}_{Δ} .

Picard-Lefshetz theory, resurgence and TQFT

Resurgence in TQFT: The analogy between $I_{\Delta}(\lambda)$ and the partition function of SU(2) Chern-Simons theory

$$\mathbf{Z}(k) = \int_{\mathcal{A}_{\mathrm{SU}(2)}/\mathcal{G}_{\mathrm{SU}(2)}} \exp\left(\frac{ki}{4\pi} \mathbf{CS}(\mathbf{a})\right) \mathcal{D}a$$

was used by Witten, Garoufalidis and Gukov-Marino-Putrov, suggesting deep connections to $SL(2,\mathbb{C})$ Chern-Simons theory, by thinking of

$$\mathcal{A}_{\mathrm{SU}(2)}/\mathcal{G}_{\mathrm{SU}(2)} \subset \mathcal{A}_{\mathrm{SL}(2,\mathbb{C})}/\mathcal{G}_{\mathrm{SL}(2,\mathbb{C})}.$$

as a cycle and decomposing it into

"middle dimensional Picard-Lefshetz thimbles"

in this path integral setting.

So back to the asymptotic expansions of WRT-invariants: The asymptotic expansion conjecture: relating τ_k to classical Chern-Simons theory.

$$\tau_k(M) \sim_{k \to \infty} \sum_{\theta \in \mathrm{CS}_{\mathrm{SU}(2)}} \exp(2\pi i k \theta) k^{d_\theta} b_\theta (1 + Z_\theta(k^{-1})).$$

where

$$Z_{\theta}(k^{-1}) = c_{\theta}^{1}k^{-1} + c_{\theta}^{2}k^{-2} + \dots$$

in general are divergent series.

The Resurgence Conjecture:

- **(**) Borel Resummability: The series Z_{θ} are Borel resummable.
- **2** Generalised Volume Conjecture: The set of poles Ω of the meromorphic functions $\mathcal{B}(Z_{\theta})$ satisfies that

$$\operatorname{CS}_{\mathbb{C}}(M) = \frac{i}{2\pi} \Omega \mod \mathbb{Z}.$$

- **2** Wall Crossing: The meromorphic functions $\mathcal{B}(Z_{\theta})$ satisfies and are in part determined by a Wall crossing structure.
- The \hat{Z} -Conjecture: The \hat{Z}_a GPPV invariants can be obtained from the functions $\mathcal{B}(Z_{\theta})$ by a Laplace type transform.
- The Radial Limit Conjecture: The WRT invariant τ_k can be (re)-obtained from \hat{Z}_0 as a limit

$$\tau_k = \frac{1}{\sqrt{k}} \lim_{q \to e^{2\pi i/k}} \hat{\mathcal{Z}}_0(q).$$

The radial limit conjecture of Gukov, Pei, Putrov and Vafa

Conjecture: Let Y be a closed oriented rational homology sphere. Set $T = \operatorname{spin}^{c}(Y)/\mathbb{Z}_{2}$. For every $a \in T$, there exists invariants

$$\Delta_a \in \mathbb{Q}, \ c \in \mathbb{Z}_+, \ \hat{\mathbf{Z}}_a(q) \in 2^{-c} q^{\Delta_a} \mathbb{Z}[[q]],$$

such that: $\hat{Z}_a(q)$ is convergent for |q| < 1 and for infinitely many k, the radial limits $\lim_{q \to \exp(2\pi i/k)} \hat{Z}_a(q)$ exists and

$$\tau_k(Y) = \frac{-i}{\sqrt{2k}} \sum_{a,b\in T} e^{2\pi i k \cdot lk(a,a)} S_{a,b} \lim_{q \to \exp(2\pi i/k)} \hat{Z}_b(q).$$

Here

$$S_{a,b} = \frac{e^{2\pi i k \cdot l k(a,b)} + e^{-2\pi i k \cdot l k(a,b)}}{|\mathcal{W}_b| |\mathcal{W}_a| \sqrt{|\mathcal{H}_1(Y;Z)|}},$$

and \mathcal{W}_x is the \mathbb{Z}_2 -stabilizer of x.

Resurgence analysis of the WRT-TQFT

Analytic continuation of $au(M,q_k)$ to the unit disc |q| < 1

Analytic extension: The radial limit conjecture gives a way of extending $\tau(M, q_k)$ to the unit disc. For $H_1(M, \mathbb{Z}) = 0$ it states

$$\tau(M, q_k) = k^{-1/2} \lim_{q \to q_k} \hat{Z}_0(M; q).$$

WRT invariant: $\tau(M) : \mathbb{N} \to \mathbb{C}$

GPPV invariant: $\hat{Z}_0(M) : D \to \mathbb{C}$

Radial limit:
$$\frac{1}{\sqrt{k}}\hat{Z}_0(M;q_k) = \tau_k(M)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Figure: Extension of $\tau_k(M)$.

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

Plumbed 3-manifolds \mathbf{Y}_{Γ}

- Graph Γ : Let (Γ, m) be an ordered weighted tree, i.e. Γ is a tree with an ordering of the vertices V and $m: V \to \mathbb{Z}$.
- Adjacency matrix M: Let M be the $V \times V$ matrix

$$M_{i,j} = \begin{cases} m_v & \text{if } v_i = v_j = v, \\ 1 & \text{if } v_i \text{and } v_j \text{ are joined by an edge,} \\ 0 & \text{otherwise.} \end{cases}$$

Assume $det(M) \neq 0$ and M^{-1} is neg. definite.

 Plumbed manifold Y_Γ: For each v ∈ V the surgery link L has an unknot component L_v with framing m_v, and L_v is chained together with L_w if v and w are joined by an edge.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Definition 2 (Gukov, Pei, Putrov, Vafa)

Let Γ be a plumbing graph. Then there is an explicit definition of

$$\Delta_a \in \mathbb{Q}, \ c \in \mathbb{Z}_+, \ \hat{\mathbf{Z}}_a(\Gamma;q) \in 2^{-c} q^{\Delta_a} \mathbb{Z}[[q]],$$

for each spin_c-structure a on \mathbf{Y}_{Γ} .

Theorem 3 (Gukov, Manolescu)

If $\mathbf{Y}_{\Gamma}=\mathbf{Y}_{\Gamma}'$ (e.g. Γ and Γ' are related by Neumann moves) then

$$\hat{\mathbf{Z}}_a(\Gamma;q) = \hat{\mathbf{Z}}_a(\Gamma';q).$$

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

(日本) (日本) (日本)

Results: (Joint with William Elbaek Mistegaard)

Resurgence Analysis of WRT-Invariants of SF-manifolds For a Seifert homology sphere $X = \Sigma(p_1, ..., p_n)$ we prove:

A decomposition and idenfitication π₀(M(SL(2, ℝ))∪M(SU(2))) ≅ π₀(M(SL(2, ℂ))) ≅ CS_ℂ(X).
2̂₀(q) is a resummation of the Ohtsuki series Z₀

$$\hat{\mathbf{Z}}_0(q) = \frac{1}{\sqrt{\tau}} \mathcal{L} \circ \mathcal{B}(\mathbf{Z}_0)(1/\tau), \quad (q = \exp 2\pi i \tau).$$

 $\textbf{③} \ \ \, \text{A full asymptotic expansion of } \hat{Z}_0(q) \ \, \text{for } \tau \ \, \text{near} \ \, 1/k \ \, \text{implying}$

$$\tau_k = \frac{1}{\sqrt{k}} \lim_{q \to e^{2\pi i/k}} \hat{\mathcal{Z}}_0(q).$$

() An identification of the poles Ω of the Borel transform $\mathcal{B}(Z_0)$

$$-2\pi i \operatorname{CS}^*_{\mathbb{C}}(X) = \Omega + 2\pi i \mathbb{Z}.$$

Resurgence analysis of the WRT-TQFT

A Seifert fibered homology 3-sphere $X = \Sigma(p_1, ..., p_n)$

Let $p_1, ..., p_n \in \mathbb{N}, n \geq 3$ be pairwise coprime and consider the Seifert fibered homology 3-sphere with $n \geq 3$ exceptional fibers

$$X = \Sigma(p_1, ..., p_n).$$

Our work builds on work of Lawrence and Rozansky on $\tau_k(X)$ and is inspired by work of Gukov, Marino and Putrov.

Figure: Surgery link for X.

(日) (コン (コン

Complex Chern-Simons theory on X

For $x \in \mathbb{Q}$ let $[x] = x \mod \mathbb{Z}$. Set $P = p_1 \cdots p_n$. We prove

Theorem 4 (A. & Mistegaard)

The Chern-Simons action is injective on $\pi_0(\mathcal{M}(\mathrm{SL}(2,\mathbb{C})))$ and

$$CS^*_{\mathbb{C}}(X) = \left\{ \left[\frac{-m^2}{4P} \right] : m \in \mathbb{Z} \text{ is divisible by at most } n-3 \text{ of the } p_j \text{ 's} \right\}.$$

The natural inclusion $\mathcal{M}(SL(2,\mathbb{R})) \cup \mathcal{M}(SU(2)) \to \mathcal{M}(SL(2,\mathbb{C}))$ induces an isomorphism on the level of π_0

 $\pi_0(\mathcal{M}(\mathrm{SL}(2,\mathbb{R}))\sqcup_{\mathcal{M}(\mathcal{U}(1))}\mathcal{M}(\mathrm{SU}(2)))\cong\pi_0(\mathcal{M}(\mathrm{SL}(2,\mathbb{C}))).$

(日)

The Borel transform and complex Chern-Simons theory

Introduce the rational function

$$G(z) = \frac{\prod_{j=1}^{n} \left(z^{\frac{P}{p_j}} - z^{-\frac{P}{p_j}} \right)}{\left(z^P - z^{-P} \right)^{n-2}} = (-1)^n \sum_{m=1}^{\infty} \chi_m z^m \in \mathbb{Z}[[z]].$$

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

イロン イヨン イヨン イヨン

э

The Borel transform and complex Chern-Simons theory

Introduce the rational function

$$G(z) = \frac{\prod_{j=1}^{n} \left(z^{\frac{P}{p_j}} - z^{-\frac{P}{p_j}} \right)}{\left(z^P - z^{-P} \right)^{n-2}} = (-1)^n \sum_{m=1}^{\infty} \chi_m z^m \in \mathbb{Z}[[z]].$$

Theorem 5 (A. & Mistegaard)

• Set $c = \sqrt{2\pi i P}$. The Borel transform $\mathcal{B}(Z_0)$ is the function

$$\mathcal{B}(\mathbf{Z}_0)(\zeta) = \frac{4c}{\pi i \sqrt{\zeta}} G\left(\exp\left(\frac{c\sqrt{\zeta}}{P}\right)\right)$$

2 Let Ω be the set of poles of $\mathcal{B}(\mathbb{Z}_0)$. Then

$$\operatorname{CS}^*_{\mathbb{C}}(X) = \frac{i}{2\pi} \Omega \mod \mathbb{Z}.$$

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

The resurgence formula $\hat{Z}_0 = \mathcal{L} \circ \mathcal{B}(Z_0)$

Theorem 6 (A. & Mistegaard)

Set $q = \exp(2\pi i \tau), \tau \in \mathbb{H}$. We have

$$\hat{\mathbf{Z}}_0(q) = \frac{1}{\sqrt{\tau}} \int_{\Gamma} \exp\left(-\frac{\xi}{\tau}\right) \mathcal{B}(\mathbf{Z}_0)(\xi) \ \mathrm{d}\,\xi = \sum_{m=1}^{\infty} \chi_m q^{\frac{m^2}{4P}}.$$

Figure: The integration contour Γ .

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

・ロト ・四ト ・ヨト ・ヨト

The asymptotic expansion of \hat{Z}_0

For small
$$t > 0$$
 set $q_{k,t} = \exp\left(\frac{2\pi i}{k - i\frac{2Pt}{\pi}}\right) \in \mathfrak{h}.$

Theorem 7 (A. & Mistegaard)

For each $\theta \in CS^*_{\mathbb{C}}(X) \exists$ a polynomial in k of degree at most n-3 with coefficients in formal power series without constant terms

$$\check{\mathbf{Z}}_{\theta}(k,t) \in t \cdot \mathbb{Q}[\pi i,k][[t]]$$

giving an asymptotic expansion for small t and fixed even k

$$\hat{\mathbf{Z}}_0(X;q_{k,t}) \underset{t \to 0}{\sim} \tau_k(X) + \sum_{\theta \in \mathrm{CS}^*_{\mathbb{C}}(X)} e^{2\pi i k \theta} \check{\mathbf{Z}}_{\theta}(k,t).$$

In particular the radial limit conjecture holds for X.

(4月) キョン キョン

A resurgence formula for τ_k

Our proof of the asymptotic expansion is based on the following resurgence lemma where Ω is the set of poles of $\mathcal{B}(Z_0)$

Lemma 8 (A. & Mistegaard)

$$\hat{\mathbf{Z}}_{0}(q) = \mathcal{L}_{\mathbb{R}_{+}} \circ \mathcal{B}(\mathbf{Z}_{0}) \left(\frac{1}{\tau}\right) + \sum_{\omega \in \Omega} \operatorname{Res}_{y=\omega}(e^{-y/\tau}\mathcal{B}(\mathbf{Z}_{0})(y)).$$

As a corollary of this and the radial limit theorem, we obtain the following resurgence formula for the WRT quantum invariant

Corollary 9 (A. & Mistegaard) $\tau_k = \mathcal{L}_{\mathbb{R}_+} \circ \mathcal{B}(\mathbb{Z}_0)(k) + \sum_{\omega \in \Omega} \operatorname{Res}_{y=\omega}(e^{-ky}\mathcal{B}(\mathbb{Z}_0)(y)).$

Hyperbolic surgeries on the figure 8 knot

We now present in more detail the analysis leading to the above results for the hyperbolic 3-manifolds

$$M(\mathbf{4}_1(p/s)) = M_{p/s}$$

with surgery link giving by the figure eight knot with framing p/s.

Figure: Figure eight knot 4_1

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

A (1) > (1) > (1) > (1)

Faddeev's quantum dilogarithm

Recall Faddeev's quantum dilogarithm with parameter $\gamma=\pi/k\in(0,1)$

$$S_{\gamma}(z) = \exp\left(\frac{1}{4} \int_{\widetilde{C}} \frac{e^{zy}}{\sinh(\pi y) \sinh(\gamma y) y} \, \mathrm{d}\, y\right).$$

for $|\operatorname{Re}(z)| < \gamma + \pi$, and

$$\widetilde{C} = (-\infty, -1/2) \cup \Delta \cup (1/2, \infty)$$

where Δ is a sufficiently small half-circle from $-\epsilon$ to ϵ in the upper half plane ($\epsilon > 0$ small enough).

(日)

Contour integral formula for the WRT-Invariant

Choose $c, d \in \mathbb{Z}$ with rd - cs = 1. Define

$$\chi_{n,k}(x,y) = \sin\left(\frac{\pi}{s}(x-nd)\right) e^{2\pi i k \left(\frac{dn^2}{s} + \frac{r}{4s}x^2 - \frac{n}{s}x - xy\right)}$$
$$\times \frac{S_{\gamma}\left(-\pi + 2\pi(x-y)\right)}{S_{\gamma}\left(-\pi + 2\pi(x+y)\right)} \cot(\pi kx) \tan(\pi ky).$$

Joint with Hansen we proved

$$\tau_k(M_{r/s}) = \nu k q^{\mu} \sum_{n \in \mathbb{Z}/|s|\mathbb{Z}} \int_{C_1(k) \times C_2(k)} \chi_{n,k}(x,y) \, \mathrm{d} \, y \, \mathrm{d} \, x$$

where $\nu, \mu \in \mathbb{C}^*$ and $C_1(k)$ is a simple closed contour which encircles the set $\{m/k : m = 1, 2, ..., k - 1\}$, and $C_2(k)$ is a simple closed contour encircling $\{(m + 1/2)/k : m = 0, 1, ..., k - 1\}$.

Contour integral formula for the WRT-Invariant

Define

$$\tilde{\chi}_{n,k}(x,y) = \sin\left(\frac{\pi}{s}(x-nd)\right) e^{2\pi i k \left(\frac{dn^2}{s} + \frac{r}{4s}x^2 - \frac{n}{s}x - xy\right)}$$
$$\times \frac{S_{\gamma}\left(-\pi + 2\pi(x-y)\right)}{S_{\gamma}\left(-\pi + 2\pi(x+y)\right)} s(x,y).$$

where

$$s(x,y) = {\rm sign}({\rm Im}(x)){\rm sign}({\rm Im}(\bar{y}))i^2$$

Theorem 10 (A. & Mistegaard)

$$\left| \int_{C_1(k) \times C_2(k)} (\chi_{n,k}(x,y) - \tilde{\chi}_{n,k}(x,y)) \, \mathrm{d} \, y \, \mathrm{d} \, x \right| = O(\frac{1}{k})$$

This follows since $|\cot(\pi kx) \tan(\pi ky) - s(x, y)|$ decays exponentially in $|\text{Im}(x)|, |\text{Im}(y)| > \frac{1}{\pi k}$. But it is technical and involves understanding good estimates for S_{γ} and Li₂.

Semi-classical expansion of the quantum dilog

The semiclassical asymptotics of S_{γ} is given by Euler's dilogarithm: For $\zeta \in \{\text{Re}(z) < \pi\}$ we have

$$S_{\gamma}(\zeta) = \exp\left(\frac{k}{2\pi i}\operatorname{Li}_{2}\left(-e^{i\zeta}\right) + I_{\gamma}(\zeta)\right),$$
$$I_{\gamma}(\zeta) = \frac{1}{4}\int_{\tilde{C}}\frac{e^{z\zeta}}{z\sinh(\pi z)}\left(\frac{1}{\sinh(\gamma z)} - \frac{1}{\gamma z}\right) \,\mathrm{d}\,z.$$

This leads us to the following phase functions indexed by $\alpha,\beta\in\{0,1\}$ and $n\in\mathbb{Z}/|s|\mathbb{Z}$

$$\begin{split} \Phi_n^{\alpha,\beta}(x,y) &= \frac{\mathsf{Li}_2(e^{2\pi i (x+y)}) - \mathsf{Li}_2(e^{2\pi i (x-y)})}{4\pi^2} \\ &\quad - \frac{dn^2}{s} + (-\frac{r}{4s}x + \frac{n}{s} + y + \alpha + \beta)x + y(\alpha - \beta). \end{split}$$

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

(日)

Theorem 11 (A. & Hansen)

There exists a surjection

$$(x,y)\mapsto [\rho_{x,y}]$$

from the set of critical points (x, y) of the phase functions $\Phi_n^{\alpha, \beta}$ with $x \notin \mathbb{Z}$ onto $\mathcal{M}^*(M_{r/s}, \mathrm{SL}(2, \mathbb{C}))$. Moreover, we have that

$$\Phi_n^{\alpha,\beta}(x,y) = \mathcal{S}_{\mathrm{CS}}([\rho_{x,y}]) \mod \mathbb{Z}.$$

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

・ 同 ト ・ ヨ ト ・ ヨ ト

A resurgence Theorem

Based on generalizations of resurgence results for Laplace integrals due to Malgrange and Pham we prove

Theorem 12 (A. & Mistegaard)

There exists resurgent power series

$$\{\mathbf{Z}_{\theta}(x)\}_{\theta \in \mathrm{CS}} \subset x^{-1}\mathbb{C}[[x^{-1}]]$$

giving a full asymptotic expansion

$$\tau_k(M_{1/p}) \sim_{k \to \infty} k \sum_{\theta \in \mathrm{CS}} e^{2\pi i k \theta} \mathrm{Z}_{\theta}(k).$$

Each Borel transform $\mathcal{B}(Z_{\theta})$ is resurgent with singularities

$$\Omega(\theta) = -2\pi i \operatorname{CS}_{\mathbb{C}} + 2\pi i \theta + 2\pi i \mathbb{Z}.$$

Resurgence Analysis of Meromorphic Transformations Nov. 2. arXiv:2011.01110

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

イロト イロト イヨト イヨト 三日

Resurgence Analysis of Meromorphic Transformations Nov. 2. arXiv:2011.01110

- $\bullet \ W \subset \mathbb{C}$ open connected subset
- $K \in \mathcal{M}(W \times \mathbb{C})$ meromorphic kernel.

$$K_w = K|_{w imes \mathbb{C}}$$
 $P_{K_w} =$ pol divisor of K_w

• $\Gamma_w \subset \mathbb{C} - P_{K_w}$ contour • $\gamma \in U \subset \mathbb{C}$, open connected subset $0 \in \overline{U} - U$ • $f \in \mathcal{M}(\mathbb{C})$ $f_{\gamma}(z) = f(\gamma z)$ $\Gamma_w \subset \mathbb{C} - (P_{K_w} \cup P_{f_{\gamma}})$ $g_{\gamma}(w) = \int_{\Gamma_w} K(w, z) f_{\gamma}(z) dz$ $A_{K,\Gamma}^{\gamma} : \mathcal{M}_{K,\Gamma}(\mathbb{C}) \to \mathcal{O}(W), \quad A_{K,\Gamma}^{\gamma}(f) = g_{\gamma}$

イロト イボト イヨト イヨト 二日

Resurgence Analysis of Meromorphic Transformations Nov. 2. arXiv:2011.01110

- $\bullet \ W \subset \mathbb{C}$ open connected subset
- $K \in \mathcal{M}(W \times \mathbb{C})$ meromorphic kernel.

$$K_w = K|_{w imes \mathbb{C}}$$
 $P_{K_w} =$ pol divisor of K_w

• $\Gamma_w \subset \mathbb{C} - P_{K_w}$ contour • $\gamma \in U \subset \mathbb{C}$, open connected subset $0 \in \overline{U} - U$ • $f \in \mathcal{M}(\mathbb{C})$ $f_{\gamma}(z) = f(\gamma z)$ $\Gamma_w \subset \mathbb{C} - (P_{K_w} \cup P_{f_{\gamma}})$ $g_{\gamma}(w) = \int_{\Gamma_w} K(w, z) f_{\gamma}(z) dz$ $A_{K,\Gamma}^{\gamma} : \mathcal{M}_{K,\Gamma}(\mathbb{C}) \to \mathcal{O}(W), \quad A_{K,\Gamma}^{\gamma}(f) = g_{\gamma}$

Want to understand the asymptotics of the transforms $A^{\gamma}_{K,\Gamma} \text{ as } \gamma \to 0.$

Faddeev's quantum dilogarithm S_{γ}

We let

$$K_F(w,z) = rac{e^{wz}}{\sinh(\pi z)z}$$
 and $f_F(z) = rac{1}{\sinh(z)}$

and

$$S_{\gamma}(w) = \exp(\frac{1}{4}g_{\gamma}^{F}(w)) \quad \forall (w,\gamma) \in \tilde{W}^{F} \times \tilde{U}^{F}$$

where

$$g_{\gamma}^{F}(w) = \int_{\mathbb{R}+i\epsilon} \frac{e^{wz}}{\sinh(\pi z)z} \frac{1}{\sinh(\gamma z)} dz$$

and

$$\tilde{W}^F = \{ w \in \mathbb{C} \mid |\mathsf{Re}(w)| < \pi + |\mathsf{Re}(\gamma)| \}, \quad \tilde{U}^F = \{ \gamma \in \mathbb{C} \mid \mathsf{Re}(\gamma) > 0 \}$$

where $S_{\gamma} \in \mathcal{M}(\mathbb{C})$ is Faddeev's quantum dilogarithm.

(日)(四)((日))(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)

The Gamma function Γ

We now let

$$K_{\Gamma}(w,z)=rac{ie^{(w-1)\log(-z)}}{2\sin(\pi z)}$$
 and $f_{\Gamma}(z)=e^{-z}$

and

$$\Gamma_w^{\Gamma} = \{ z \in \mathbb{C} \mid d(z, \mathbb{R}_+) = \epsilon \}$$

oriented from $\infty + i\epsilon$ to $\infty - i\epsilon$. We then have that

$$\Gamma_{\gamma}(w) = g_{\gamma}^{\Gamma}(w)$$

where Γ_1 is Euler's Gamma function.

イロト イポト イヨト イヨト 二日

One over the Gamma function $\frac{1}{\Gamma}$

We now let

$$K_{\frac{1}{\Gamma}}(w,z) = \frac{1}{2\pi i} e^{-w\log(z)} \text{ and } f_{\frac{1}{\Gamma}}(z) = e^z$$

and

$$\Gamma^{\frac{1}{\Gamma}}_{w} = \{ z \in \mathbb{C} \mid d(z, \mathbb{R}_{-}) = \epsilon \}$$

oriented from $-\infty - i\epsilon$ to $-\infty + i\epsilon$. We then have that

$$\frac{1}{\Gamma_{\gamma}(w)} = g_{\gamma}^{\frac{1}{\Gamma}}(w).$$

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Riemann zeta function ζ

We set

$$K_{\zeta}(w,z) = -rac{\Gamma(1-w)e^{(w-1)\log(z)}}{2\pi i} \text{ and } f_{\zeta}(z) = rac{1}{e^z - 1}$$

and

$$\Gamma_w^{\zeta} = \{ z \in \mathbb{C} \mid d(z, \mathbb{R}_+) = \epsilon \}$$

oriented from $-\infty - i\epsilon$ to $-\infty + i\epsilon$. We then have that

$$\zeta_{\gamma}(w) = g_{\gamma}^{\zeta}(w)$$

where $\zeta = \zeta_1$.

イロト イヨト イヨト イヨト 二日

Gauss hypergeometric function $_2F_1$

We set

$$K_{2F_1}(w,z) = e^{z\log(-w)} \text{ and } f_{2F_1}(z) = \frac{\Gamma(-z)\Gamma(z+a)\Gamma(z+b)}{\Gamma(z+c)}$$

and

$$\Gamma_w^{2F_1} = i\mathbb{R}$$

with the orientation induced from the usual one on $\ensuremath{\mathbb{R}}.$ Then

$$\frac{\Gamma(a)\Gamma(b)}{\Gamma(c)}{}_2F_1^{\gamma}(a,b;c;w) = \frac{1}{2\pi i}g_{\gamma}^{2F_1}(w)$$

with $_2F_1^1(a,b;c;w) = _2F_1(a,b;c;w)$ Gauss hypergeometric function.

We consider the asymptotic expansion transform. Assume

$$h_m(w) = \int_{\Gamma_w} K(w, z) z^m dz.$$

exist for all $m \in \mathbb{Z}$. Then define

$$\tilde{A}_{K,\Gamma}^{\gamma,n}: \mathcal{M}_{K,\Gamma}(\mathbb{C}) \to \mathcal{O}(W)[\gamma^{-1},\gamma]]$$

given by

$$\tilde{A}_{K,\Gamma}^{\gamma,n}(f)(w) = \sum_{m=-n_0}^{\infty} a_m h_m(w) \gamma^m,$$

where the Laurent series of f at zero is (n_0 pol order of f at zero)

$$f(z) = \sum_{m=-n_0}^{\infty} a_m z^m$$

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

Assumption on Γ and estimates on K and f

• $\tilde{\Gamma}_w$ deformation of Γ_w in $\mathbb{C} - (P_{K_w} \cup P_{f_\gamma} - \{0\})$

• $\tilde{\Gamma}_w$ consist of d smooth arc segments $\tilde{\Gamma}_{w,j}$, $j = 1, \dots, d$.

• $\Theta(z) =$ angle between the line through zero and z and tangent line to $\tilde{\Gamma}_{w,j}$ at z.

• $\exists b > 0$:

$$|\cos(\Theta(z))| \ge b, \quad \forall z \in \tilde{\Gamma}_{w,j}, \ j = 1, \dots d.$$

• $\exists \ \delta > 0, \ c > 0, \ c_w > 0, \ w \in W \text{ and } \tilde{c}_{\gamma} > c, \ \gamma \in U :$

$$K(w,z) \leq c_w e^{-\delta|z|} |z|^{-k_0} \quad \forall (w,z) \in W \times (\tilde{\Gamma}_w - \{0\})$$
$$|f_{\gamma}(z)| \leq \tilde{c}_{\gamma} |\gamma z|^{-n_0} \quad \forall (\gamma,z) \in U \times (\tilde{\Gamma}_w - \{0\}).$$

Resurgence analysis of the WRT-TQFT

An example of an allowed $\tilde{\Gamma}_w$ with indication of $\Theta(z)$ at some $z \in \tilde{\Gamma}_w$.

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

Э

Theorem 13 (A.)

There is an asymptotic expansion in the Poincare sense to all orders

$$A^{\gamma}_{K,\Gamma}(f) \sim \tilde{A}^{\gamma}_{K,\Gamma}(f).$$

Estimate: For all $n \ge k_0 - 1$ there exist C_n

 $|A_{K,\Gamma}^{\gamma}(f)(w) - \tilde{A}_{K,\Gamma}^{\gamma,n}(f)(w)| \le C_n c_w \tilde{c}_{\gamma} |\gamma|^{n+1} \delta^{-(n-k_0+2)} (n-k_0+2)!$

for all $(w, \gamma) \in W \times U$.

$$\begin{aligned} C_{k_0-1} &= \frac{d}{bc} c'_{k_0-1}, \quad C_n &= \frac{d}{bc\sqrt{n-k_0+1}} c'_n, \quad n \ge k_0 \\ c'_n &= \inf_{0 < r < R_f} \frac{1}{r^{n+1}} \left(\frac{cr^{-n_0}}{n-k_0+2} + k(r) \right), \quad n \ge k_0 - 1 \\ k(r) &= \sum_{m=-n_0}^{\infty} |a_m| r^m, \quad r \in (0, R_f), \end{aligned}$$

 $R_f = {\rm dist}(0, P_f - \{0\}).$

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

(4月) (3日) (3日) 日

Borel resummation of the (divergent) series $\tilde{A}^{\gamma}_{K,\Gamma}(f)$ in γ . • $g^{-}_{\gamma} \in \mathcal{M}(U)[\gamma]$

$$g_{\gamma}^{-}(w) = \sum_{m=-n_0}^{k_0-1} a_m h_m(w) \gamma^m,$$

• $g^+ \in \gamma \mathcal{M}(U)[[\gamma]]$

$$g_{\gamma}^+(w) = \sum_{m=k_0}^{\infty} a_m h_m(w) \gamma^m.$$

• Borel transform

$$\mathcal{B}: \gamma \mathcal{O}(U)[[\gamma]] \to \mathcal{O}(U)[[\xi]]$$

determined by

$$\mathcal{B}(\gamma^m) = \frac{\xi^{m-1}}{(m-1)!}$$

and formally extended linearly over $\mathcal{O}(U)$.

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

Let
$$\mathbb{R}^+_{\theta} = e^{i\theta}\mathbb{R}_+$$
 for $\theta \in \mathbb{R}$
 $\mathcal{L}_{\theta}(\psi)(\gamma) = \int_{\mathbb{R}^+_{\theta}} e^{-\xi/\gamma}\psi(\xi)d\xi$

well defined if

$$|\psi(\xi)| \le Ce^{\alpha|\xi|}, \forall \xi \in \mathbb{R}^+_{\theta}$$

and

$$\alpha < \mathsf{Re}(\gamma) \cos \theta + \mathsf{Im}(\gamma) \sin \theta.$$

• $\mathcal{L}_{\theta} \circ \mathcal{B}(\gamma^m) = \gamma^m \quad \forall m \in \mathbb{Z}_+ \text{ when ever } \mathcal{L}_{\theta}(\gamma^m) \text{ is defined.}$ • Let $\varphi \in \mathcal{M}(\mathbb{C})$ be

$$\varphi(z) = f(z) - \sum_{m=-n_0}^{k_0-1} a_m z^m \quad \varphi_z(\gamma) = \varphi(\gamma z).$$

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

イロト イロト イヨト イヨト 三日

Theorem 14 (A.)

• If $\exists \theta, \alpha \in \mathbb{R}, \ 0 < \beta < \delta, \ C > 0$: Well def. $\mathcal{L}_{\theta}^{-1}(\varphi_z), \ z \in \tilde{\Gamma}_w$,

 $|\mathcal{L}_{\theta}^{-1}(\varphi_z)(\xi)| \le C e^{\alpha |\xi| + \beta |z|} |z|^{k_0} \quad \forall (z,\xi) \in \tilde{\Gamma}_w \times V_{w,\theta}, \quad \forall w \in W$

 $V_{w,\theta} \subset \mathbb{C}$ open containing the half line \mathbb{R}^+_{θ} .

• Then g_{γ}^+ is Borel summable and

$$B_w(\xi) = \mathcal{B}(g_\gamma^+(w))(\xi), B_w \in \mathcal{O}(V_{w,\theta})$$

$$B_w(\xi) = \int_{\tilde{\Gamma}_w} K(w, z) \mathcal{L}_{\theta}^{-1}(\varphi_z)(\xi) dz.$$

$$g_{\gamma}(w) = g_{\gamma}^{-}(w) + \mathcal{L}_{\theta}(B_w)(\gamma) \quad \forall \gamma \in U_{\theta,\alpha}.$$

(四) () () () ()

Let now the principal part of φ at $p \in P_{\varphi}$ be denoted

$$\tilde{\varphi}_{z,p}(\gamma) = \sum_{m=1}^{n_{\varphi}} \frac{b_{p,m}}{(\gamma z - p)^m},$$

where we assume that the pole order is universally bounded by some integer n_{φ} independent of $z \in \tilde{\Gamma}_w$ and $w \in W$. We observe that if we let

$$\tilde{\varphi}'_{z,p}(\gamma) = \sum_{m=1}^{n_{\varphi}} \frac{b_{p,m}}{p^m} (-1)^m \sum_{l=0}^{m-1} \binom{m}{l} \left(\frac{z}{p}\right)^{m-l} \frac{\left(\frac{z}{p}\right)^{m-l}}{\left(\frac{1}{\gamma} - \frac{z}{p}\right)^{m-l}}$$

then

$$\tilde{\varphi}_{z,p}(\gamma) = \sum_{m=1}^{n_{\varphi}} \frac{b_{p,m}}{p^m} (-1)^m + \tilde{\varphi}'_{z,p}(\gamma).$$

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

We will assume that there exist an ordering on P_{φ} such that the series

$$\tilde{\varphi}'_{z}(\gamma) = \sum_{p \in P_{\varphi}} \tilde{\varphi}'_{z,p}(\gamma)$$

with respect to that ordering is uniformly absolutely convergent on

$$O_{\epsilon} = \mathbb{C} - \cup_{p \in P_{\varphi}} D(p, \epsilon)$$

for some $\epsilon>0$ and there exist an entire function ψ_z parametriced by $z\in \tilde{\Gamma}_w$ and $w\in W$ such that

$$\varphi_z(\gamma) = \tilde{\varphi}'_z(\gamma) + \psi_z(\gamma) \quad \forall \gamma \in O_\epsilon.$$

We will see in examples that one actually sometimes get that $\psi_z = 0$, but in general we will simply assume that $\mathcal{L}_{\theta}^{-1}(\psi_z)$ exist for all $z \in \tilde{\Gamma}_w$ and $w \in W$.

Theorem 15 (A.)

Assume that exists $\theta, \alpha \in \mathbb{R}$, $0 < \beta < \delta$ and a constant C_{ψ} , such that for all $w \in W$ we have that

$$|\mathcal{L}_{\theta}^{-1}(\psi_{z})(\xi)| \leq C_{\psi} e^{\alpha |\xi| + \beta |z|} |z|^{k_{0}} \quad \forall (z,\xi) \in \tilde{\Gamma}_{w} \times V_{w,\theta},$$

where $V_{w,\theta} \subset \mathbb{C}$ is an open subset containing the half line \mathbb{R}^+_{θ} . Assuming further that

$$\int_{\mathbb{R}^+_\theta} \sum_{p \in P_\phi} \sum_{m=1}^{n\varphi} \frac{|b_{p,m}|}{|p|^{2m-1}} \int_{\tilde{\Gamma}_W} \left| e^{-\xi/\gamma} K(w,z) e^{\frac{z\xi}{p}} \right| \left(|\frac{z}{p}| + |\xi| \right)^{m-1} |dz| |d\xi| < \infty$$

and that

$$\frac{1}{|\gamma|^2} \begin{pmatrix} \textit{Re}(\gamma) \\ \textit{Im}(\gamma) \end{pmatrix} \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} > \frac{1}{|p|^2} \begin{pmatrix} \textit{Re}(p) & \textit{Im}(p) \\ \textit{Im}(p) & -\textit{Re}(p) \end{pmatrix} \begin{pmatrix} \textit{Im}(z) \\ \textit{Re}(z) \end{pmatrix} \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} > 0$$

for all $p \in P_{\phi}$ and $z \in \tilde{\Gamma}_w$, $w \in W$.

Then we have for all $(w,\xi) \in W \times V_{w,\theta}$ that

$$\begin{split} B_w(\xi) &= \sum_{p \in P_{\varphi}} \left(\int_{\tilde{\Gamma}_w} K(w, z) e^{\frac{z\xi}{p}} dz \right) \sum_{m=1}^{n_{\varphi}} \frac{b_{p,m}}{p^m} (-1)^m \sum_{l=0}^{m-1} \binom{m}{l} \left(\frac{z}{p}\right)^{m-l} \frac{\xi^{m-l-1}}{(m-l-1)!} \\ &+ \int_{\tilde{\Gamma}_w} K(w, z) \mathcal{L}_{\theta}^{-1}(\psi_z)(\xi) dz. \end{split}$$

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

Resurgence properties and Stokes phenomenon of B_w

- $\mathcal{L}_{\theta}(B_w)$ constant in θ on sectors where B_w has no poles
- Jump when \mathbb{R}^+_{θ} hits poles of B_w
- Jumps $\theta_{J_w} = \{\theta_j \mid j \in J_w\}$ index by a set J_w , $w \in W$.
- Let the jump at θ_j be denote $\Delta_{\theta_j}(\mathcal{L}_{\theta}(B_w))$.

Theorem 16 (A.)

Under the above assumptions we have that

$$\Delta_{\theta_j}(\mathcal{L}_{\theta}(B_w)) = 2\pi i \sum_{p \in P_{B_w} \cap e^{i\theta_j} \mathbb{R}_+} \operatorname{Res}_{\xi=p}(e^{-\xi/\gamma} B_w(\xi))$$

provided B_w decays sufficiently fast in a small sector around \mathbb{R}^+_{θ} , $j \in J_w$, $w \in W$.

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT

・ロト ・回ト ・ヨト ・ヨト

We let

$$K_F(w,z) = rac{e^{wz}}{\sinh(\pi z)z}$$
 and $f_F(z) = rac{1}{\sinh(z)}$

and

$$S_{\gamma}(w) = \exp(\frac{1}{4}g_{\gamma}^{F}(w)) \quad \forall (w,\gamma) \in \tilde{W}^{F} \times \tilde{U}^{F}$$

where

$$g_{\gamma}^{F}(w) = \int_{\mathbb{R}+i\epsilon} \frac{e^{wz}}{\sinh(\pi z)z} \frac{1}{\sinh(\gamma z)} dz$$

$\quad \text{and} \quad$

$$ilde{W}^F = \{ w \in \mathbb{C} \mid |\mathsf{Re}(w)| < \pi + |\mathsf{Re}(\gamma)| \}, \quad ilde{U}^F = \{ \gamma \in \mathbb{C} \mid \mathsf{Re}(\gamma) > 0 \}$$

where $S_\gamma \in \mathcal{M}(\mathbb{C})$ is Faddeev's quantum dilogarithm.

We observe that $k_0 = 2$ and $n_0 = 1$ and further that $R_{f_F} = \pi$. Laurent series for f_F convergent in $D(0,\pi)$ is

$$f_F(z) = \sum_{m=0}^{\infty} \frac{2(1-2^{2m-1})B_{2m}}{(2m)!} z^{2m-1} \quad \forall z \in D(0,\pi),$$

where B_{2m} is the 2m'th Bernoulli number. Let

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

For $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ we let $\tilde{\Gamma}^F_{\theta} = e^{i\theta}(-\infty, 0] \cup e^{i\theta}[0, \infty).$ (so $d^F = 2$)

$$W_{\theta}^{F} = \left\{ w \in \mathbb{C} \middle| -\pi \cos \theta + \delta < \begin{pmatrix} \mathsf{Re}(w) \\ \mathsf{Im}(w) \end{pmatrix} \cdot \begin{pmatrix} \cos \theta \\ -\sin \theta \end{pmatrix} < \pi \cos \theta - \delta \right\}$$

and

$$U^F_\theta = \left\{ \gamma \in \mathbb{C} \middle| \theta - \frac{\pi}{2} < \operatorname{Arg}(\gamma) < \frac{\pi}{2} + \theta \right\} = \left\{ \gamma \in \mathbb{C} \middle| \left(\frac{\operatorname{Re}(\gamma)}{\operatorname{Im}(\gamma)} \right) \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} > 0 \right\}$$

This definition of U_{θ}^{F} guarantees that the poles of f_{γ}^{F} , which are all on the imaginary axis, when γ is positive real, never crosses $\tilde{\Gamma}_{\theta}^{F}$ as the absolute value of the argument of γ grows from zero to π , not including π . We observe that

$$\operatorname{\mathsf{Re}}(\gamma)\cos\theta(\gamma)\neq\operatorname{\mathsf{Im}}(\gamma)\sin\theta(\gamma)$$

for all $\gamma \in U^F_{\theta}$.

(日)

Application to Faddeev's quantum Dilog.

Theorem 17 (A.)

We have the following estimates for all positive integers \boldsymbol{n}

$$| Log(S_{\gamma}(w)) - P_{\gamma}^{n}(w) | \leq \tilde{C}_{2n}^{F} |\gamma|^{2n} \delta^{-2n-1}(2n)!$$

for all $(w,\gamma)\in W^F_\theta\times U^F_\theta$ and all $\theta\in(-\frac{\pi}{2},\frac{\pi}{2})$ where

$$\tilde{C}_{2n}^F = \frac{2^4 \left(\frac{2}{\pi}\right)^{2n+1} |\gamma|}{\sqrt{2n-1}(1-e^{-2\pi\cos\theta})(\operatorname{Re}(\gamma)\cos\theta - \operatorname{Im}(\gamma)\sin\theta)}$$

This is similar, but not identical, to the estimates obtained by Garoufalidis and Kashaev, using advanced techniques from the theory of resurgence, in the case where $\operatorname{Re}(\gamma) > 0$, e.g. in the case our $\theta = 0$. Ours is more general, since it does not require that $\operatorname{Re}(\gamma) > 0$, in fact, we see that as we vary $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ the above theorem applies to all $\gamma \in \mathbb{C} - \mathbb{R}_{-}$.

We recall that for all $z\in \mathbb{C}-i\pi\mathbb{Z}$

$$\frac{1}{\sinh(z)} = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{(-1)^n}{z - i\pi n} + \frac{(-1)^n}{z + i\pi n} \right) = \frac{1}{z} + 2\sum_{n=1}^{\infty} \frac{(-1)^n z}{z^2 + \pi^2 n^2},$$

where the last series converges uniformly on

$$O_{\epsilon} = \mathbb{C} - \sqcup_{n \in \mathbb{Z} - \{0\}} D(i\pi n, \epsilon)$$

for all $\epsilon > 0$. Thus

$$\varphi_z^F(\gamma) = \frac{1}{\sinh(\gamma z)} - \frac{1}{\gamma z} = \frac{2z}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \frac{\frac{1}{\gamma}}{(\frac{1}{\gamma})^2 + (\frac{z}{\pi n})^2}$$

converges uniformly in

$$\gamma \in O_{\epsilon,z} = \mathbb{C} - \sqcup_{n \in \mathbb{Z} - \{0\}} D(\frac{i\pi n}{z}, \epsilon)$$

for $\epsilon > 0$ and $z \neq 0$.

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

・ロト ・回ト ・ヨト ・ヨト

For

$$\frac{1}{|\gamma|^2} \begin{pmatrix} \mathsf{Re}(\gamma) \\ \mathsf{Im}(\gamma) \end{pmatrix} \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} > \frac{1}{\pi} \bigg| \begin{pmatrix} \mathsf{Im}(z) \\ \mathsf{Re}(z) \end{pmatrix} \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

we immidiately check that

$$\mathcal{L}_{\theta}^{-1}\left(\frac{\frac{1}{\gamma}}{(\frac{1}{\gamma})^2 + (\frac{z}{\pi n})^2}\right)(\xi) = \cos(\frac{\xi z}{\pi n}).$$

since

$$\mathcal{L}_{\theta}(\cos(\frac{\xi z}{\pi n}))(\gamma) = \int_{\mathbb{R}_{\theta}+} e^{-\xi/\gamma} \cos(\frac{\xi z}{\pi n}) d\xi = \frac{1}{2} \left(\frac{1}{\frac{1}{\gamma} + i\frac{z}{\pi n}} + \frac{1}{\frac{1}{\gamma} - i\frac{z}{\pi n}} \right)$$

and so

$$\mathcal{L}_{\theta}^{-1}(\varphi_{z}^{F})(\xi) = \frac{2z}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos(\frac{\xi z}{\pi n}).$$

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

(日) (종) (종) (종) (종) (종)

So we get that

$$B_w(\xi) = \int_{\Gamma_w^F} K_F(w, z) \mathcal{L}^{-1}(\varphi_z^F)(\xi) dz =$$
$$\frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \left(\int_{\Gamma_w^{F,\gamma}} \frac{e^{(w+i\frac{\xi}{\pi n})z}}{\sinh(\pi z)} dz + \int_{\Gamma_w^{F,\gamma}} \frac{e^{(w-i\frac{\xi}{\pi n})z}}{\sinh(\pi z)} dz \right)$$

Let

$$V_{w,\theta} = \left\{ \xi \in \mathbb{C} \left| \begin{pmatrix} \pi - \operatorname{\mathsf{Re}}(w) \\ \operatorname{\mathsf{Im}}(w) \end{pmatrix} \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} > \frac{1}{\pi} \left| \begin{pmatrix} \operatorname{\mathsf{Im}}(\xi) \\ \operatorname{\mathsf{Re}}(\xi) \end{pmatrix} \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \right| \right\}.$$

recall

$$\frac{1}{1+e^{-iw}} = \frac{i}{2} \int_{\Gamma_w^F} \frac{e^{wz}}{\sinh(\pi z)} dz.$$

Jørgen Ellegaard Andersen

Resurgence analysis of the WRT-TQFT

(日) (종) (종) (종) (종) (종)

Theorem 18 (A.)

For all $0 < \delta < \pi \cos \theta$, $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $w \in W_{\theta}^F$ and $\xi \in V_{w,\theta}$ we have that

$$B_w(\xi) = \frac{2}{i\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \left(\frac{1}{1 + e^{-i(w + i\frac{\xi}{\pi n})}} + \frac{1}{1 + e^{-i(w - i\frac{\xi}{\pi n})}} \right)$$

This formula matches the one obtained by Garoufalidis and Kashaev in the special case where $\theta = 0$, e.g. in the case where $\text{Re}(\gamma) > 0$. From this formula we can obtain the Stokes coefficients by the residue theorem.

We observe that B_w actually extends to a meromorphic function on all of \mathbb{C} , e.g. $B_w \in \mathcal{M}(\mathbb{C})$ for all

$$w \in \mathbb{C} - (\pi + 2\pi\mathbb{Z}).$$

Furthermore its poles are

$$P_{B_w} = \pm i\pi \mathbb{Z}_+ (\pi - w + 2\pi \mathbb{Z}).$$

Resurgence analysis of the WRT-TQFT

Thank you very much for your attention!

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT