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The WRT Invariant τk(M,K)

Reshetikhin and Turaev defined for each k ∈ N a TQFT τk. For a
closed 3-mfd M with a knot K, colored by a representation λ we
have the WRT invariant

τk(M,K, λ) ∈ C

which is a model for Witten’s SU(2) quantum Chern-Simons theory

Zk(M,K, λ) =

∫

ASU(2)/GSU(2)

exp

(
ki

4π
CS(a)

)
trλ (HolK(a))Da.

The WRT-TQFT is a full 2 + 1 dimensional TQFT, which can be
studied using modular tensor categories, conformal field theory or
quantization of moduli spaces of flat connections on surfaces with
labeled punctures.
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Conjectures about τk and resurgence as a Rosetta stone

Main conjectures concerning the WRT-TQFT:
1 The asymptotic expansion conjecture: relating τk to classical

Chern-Simons theory.

τk(M) ∼k→∞
∑

θ∈CSSU(2)

exp(2πikθ)kdθbθ(1 + Zθ(k
−1)).

where Zθ(k−1) = c1
θk
−1 + c2

θk
−2 + . . ..
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Conjectures about τk and resurgence as a Rosetta stone

Main conjectures concerning the WRT-TQFT:
1 The asymptotic expansion conjecture: relating τk to classical

Chern-Simons theory.
2 The volume conjecture: relating τk to hyperbolic geometry.

Kashaev’s original volume conjecture (in the MM
formulation):

lim
k→∞

1

k
log(
|τk(S3,K, λ = k + 2)|
|τk(S3, U, λ = k + 2)| ) =

1

2π
Vol(S3 −K)
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Conjectures about τk and resurgence as a Rosetta stone

Main conjectures concerning the WRT-TQFT:
1 The asymptotic expansion conjecture: relating τk to classical

Chern-Simons theory.
2 The volume conjecture: relating τk to hyperbolic geometry.
3 Integrality and categorification of τk: The GPPV invariant of a

3-mfd. M (defined as a string theory BPS index) with a spinc

structure a is an integer power series

Ẑa(M ; q) ∈ Z[[q]]0.

Conjecture: there exists a homology theory H•,•(M ; a) s.t.

Ẑa(M ; q) =
∑

i,j

(−1)iqj dim (Hi,j(M ; a)) .

The asymptotic expansion of the TQFT τk, the volume
conjecture and Ẑa(q) are connected via resurgence.
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Start with:
The asymptotic expansion conjecture: relating τk to classical
Chern-Simons theory.

τk(M) ∼k→∞
∑

θ∈CSSU(2)

exp(2πikθ)kdθbθ(1 + Zθ(k
−1)).

where
Zθ(k

−1) = c1
θk
−1 + c2

θk
−2 + . . .

in general are divergent series.
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Resummation of divergent power series

Divergent series: In mathematical physics divergent series are
common and many examples comes from path integrals.

Problem: given a divergent power series

ϕ(z) ∈ z−1C[[z−1]].

we want to construct a holomorphic function

ϕ̂ ∈ O(D)

having ϕ as an asymptotic expansion, i.e. ∀m ∈ N

ϕ̂(z) = ϕ0z
−1 + · · ·+ ϕmz

−m−1 +O(z−m−2).

Borel-Laplace resummation is a solution to this problem.
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The Borel transform B

Definition 1
The Borel transform

B : z−1C[[z−1]]→ C[[ζ]]

is the C-linear extension of

B
(
z−α−1

)
=

ζα

Γ(α+ 1)
=
ζα

α!
.

Here Γ is the Gamma function, which for Re(x) > 0 is defined by

Γ(x) =

∫ ∞

0
e−ttx−1 d t.
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The Borel transform B as the inverse of the Laplace
transform L

The Laplace transform L: Let γ ⊂ C be an oriented
countour. Let g be a holomorphic function. Define

Lγ(g)(z) =

∫

γ
exp(−z · ζ)g(ζ) d ζ.

Proposition 1
For all m ∈ N one has

LR+ ◦ B(z−m−1) = z−m−1,

B ◦ LR+(ζm) = ζm.
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Borel-Laplace resummation ϕ 7→ L ◦ B(ϕ)

Proposition 2

Let ϕ(z) ∈ z−1C[[z−1]]. Assume B(ϕ)(ζ) extends to an analytic
function of appropriate bound along γ(θ) = exp(iθ)R+. Consider

ϕ̂(z)
def.
= Lγ(θ) ◦ B(ϕ)(z) =

∫

γ(θ)
e−ζzB(ϕ)(ζ) d ζ.

The function ϕ̂(z) is analytic on Re(z exp(iθ)) > 0 and has ϕ(z) as
Poincaré asymptotic expansion

ϕ̂(z) ∼|z|→∞ ϕ(z) ∈ z−1C[[z−1]].
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Picard-Lefshetz theory and resurgence

Picard-Lefshetz theory and resurgence: Let f ∈ O(Cd), let
ω ∈ Ωd

Hol(Cd), let ∆ be a PL-thimble and consider

I∆(λ) =

∫

∆

exp(−λf(z)) ω(z)

Think of the t-plane as the set of values of f with a discrete set of
critical values (here 0, t+, t−) with curves γ emanating from them,

along which the exponential factor is decaying.
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Illustration of a Picard-Lefschetz thimble ∆(σ, γ)

Below we illustrate a Picard-Lefshetz thimble ∆(σ, γ) foliated by
vanishing cycles σ(t) ∈ H∗(f

−1(t),Z) which are parallel (w.r.t. the
Gauss-Manin connection) along a curve γ ⊂ Im(f)

γ(t)

σ(γ(t))

Figure: Thimble ∆(σ, γ) in d = 2.
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Picard-Lefshetz theory and resurgence

Picard-Lefshetz theory and resurgence: Let f ∈ O(Cd), let
ω ∈ Ωd

Hol(Cd), let ∆ be a PL-thimble and consider

I∆(λ) =

∫

∆

exp(−λf(z)) ω(z).

Let Ĩ∆ ∈ ξ−1C[[ξ−1]] be such that we have the asymptotic
expansion

I∆(λ) ∼ exp(−λf(z∆))λd∆(1 + Ĩ∆(λ−1)).

The aim of Écalle’s theory of resurgence is to decode the
information contained in the divergent series

Ĩ∆ ∈ ξ−1C[[ξ−1]]

and determine the properties of the Borel resummation of them as
meromorphic multi-value functions and in turn to recover from
them the actual integrals I∆(λ).
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Picard-Lefshetz theory and resurgence

In particular, when we turn the argument of the expansion
parameter λ around, then the γ’s emanating from some critical
point will hit some other critical point and at this point the
corresponding I∆ jumps to

I∆ 7→ I∆ +n(∆,∆′) I∆′ ,

hence we see that

I∆′ resurges with a multiplicity factor n(∆,∆′) in I∆.

Écalle has developed his Alien calculus precisely to determine these
jumping or wall crossing phenomenon directly from the divergent
series Ĩ∆.
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Picard-Lefshetz theory, resurgence and TQFT

Resurgence in TQFT: The analogy between I∆(λ) and the
partition function of SU(2) Chern-Simons theory

Z(k) =

∫

ASU(2)/GSU(2)

exp

(
ki

4π
CS(a)

)
Da

was used by Witten, Garoufalidis and Gukov-Marino-Putrov,
suggesting deep connections to SL(2,C) Chern-Simons theory, by
thinking of

ASU(2)/GSU(2) ⊂ ASL(2,C)/GSL(2,C).

as a cycle and decomposing it into

"middle dimensional Picard-Lefshetz thimbles"

in this path integral setting.
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So back to the asymptotic expansions of WRT-invariants:
The asymptotic expansion conjecture: relating τk to classical
Chern-Simons theory.

τk(M) ∼k→∞
∑

θ∈CSSU(2)

exp(2πikθ)kdθbθ(1 + Zθ(k
−1)).

where
Zθ(k

−1) = c1
θk
−1 + c2

θk
−2 + . . .

in general are divergent series.
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The Resurgence Conjecture:
1 Borel Resummability: The series Zθ are Borel resummable.
2 Generalised Volume Conjecture: The set of poles Ω of the

meromorphic functions B(Zθ) satisfies that

CSC(M) =
i

2π
Ω mod Z.

3 Wall Crossing: The meromorphic functions B(Zθ) satisfies and
are in part determined by a Wall crossing structure.

4 The Ẑ-Conjecture: The Ẑa GPPV invariants can be obtained
from the functions B(Zθ) by a Laplace type transform.

5 The Radial Limit Conjecture: The WRT invariant τk can be
(re)-obtained from Ẑ0 as a limit

τk =
1√
k

lim
q→e2πi/k

Ẑ0(q).
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The radial limit conjecture of Gukov, Pei, Putrov and Vafa

Conjecture: Let Y be a closed oriented rational homology sphere.
Set T = spinc(Y )/Z2. For every a ∈ T, there exists invariants

∆a ∈ Q, c ∈ Z+, Ẑa(q) ∈ 2−cq∆aZ[[q]],

such that: Ẑa(q) is convergent for |q| < 1 and for infinitely many k,
the radial limits limq→exp(2πi/k) Ẑa(q) exists and

τk(Y ) =
−i√
2k

∑

a,b∈T
e2πik·lk(a,a)Sa,b lim

q→exp(2πi/k)
Ẑb(q).

Here

Sa,b =
e2πik·lk(a,b) + e−2πik·lk(a,b)

|Wb||Wa|
√
|H1(Y ;Z)|

,

and Wx is the Z2-stabilizer of x.
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Analytic continuation of τ(M, qk) to the unit disc |q| < 1

Analytic extension: The radial limit conjecture gives a way of
extending τ(M, qk) to the unit disc. For H1(M,Z) = 0 it states

τ(M, qk) = k−1/2 lim
q→qk

Ẑ0(M ; q).

1

q24

q12

q6
qk = exp

(
2πi
k

)

WRT invariant: τ(M) : N→ C

GPPV invariant: Ẑ0(M) : D → C

D = {q : |q| < 1}
Radial limit: 1√

k
Ẑ0(M ; qk) = τk(M)

Figure: Extension of τk(M).
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Plumbed 3-manifolds YΓ

Graph Γ : Let (Γ,m) be an ordered weighted tree, i.e. Γ is a
tree with an ordering of the vertices V and m : V → Z.

Adjacency matrix M: Let M be the V × V matrix

Mi,j =





mv if vi = vj = v,

1 if viand vj are joined by an edge,
0 otherwise.

Assume det(M) 6= 0 and M−1 is neg. definite.

Plumbed manifold YΓ: For each v ∈ V the surgery link L
has an unknot component Lv with framing mv, and Lv is
chained together with Lw if v and w are joined by an edge.
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Topological invariance and the definition of Ẑa(Y ; q)

Definition 2 (Gukov,Pei,Putrov,Vafa)

Let Γ be a plumbing graph. Then there is an explicit definition of

∆a ∈ Q, c ∈ Z+, Ẑa(Γ; q) ∈ 2−cq∆aZ[[q]],

for each spinc-structure a on YΓ.

Theorem 3 (Gukov, Manolescu)

If YΓ = Y′Γ (e.g. Γ and Γ′ are related by Neumann moves) then

Ẑa(Γ; q) = Ẑa(Γ
′; q).
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Results: (Joint with William Elbaek Mistegaard)

Resurgence Analysis of WRT-Invariants of SF-manifolds

For a Seifert homology sphere X = Σ(p1, ..., pn) we prove:

1 A decomposition and idenfitication

π0(M(SL(2,R))∪M(SU(2))) ∼= π0(M(SL(2,C))) ∼= CSC(X).

2 Ẑ0(q) is a resummation of the Ohtsuki series Z0

Ẑ0(q) =
1√
τ
L ◦ B(Z0)(1/τ), (q = exp 2πiτ).

3 A full asymptotic expansion of Ẑ0(q) for τ near 1/k implying

τk =
1√
k

lim
q→e2πi/k

Ẑ0(q).

4 An identification of the poles Ω of the Borel transform B(Z0)

−2πiCS∗C(X) = Ω + 2πiZ.
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A Seifert fibered homology 3-sphere X = Σ(p1, ..., pn)

Let p1, ..., pn ∈ N, n ≥ 3 be pairwise coprime and consider the
Seifert fibered homology 3-sphere with n ≥ 3 exceptional fibers

X = Σ(p1, ..., pn).

Our work builds on work of Lawrence and Rozansky on τk(X) and
is inspired by work of Gukov, Marino and Putrov.

p1/q1
p2/q2 p3/q3

pn/qn

Figure: Surgery link for X.
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Complex Chern-Simons theory on X

For x ∈ Q let [x] = x mod Z. Set P = p1 · · · pn. We prove

Theorem 4 (A. & Mistegaard)

The Chern-Simons action is injective on π0(M(SL(2,C))) and

CS∗C(X) =
{[−m2

4P

]
: m ∈ Z is divisible by at most n− 3 of the pj ’s

}
.

The natural inclusionM(SL(2,R)) ∪M(SU(2))→M(SL(2,C))
induces an isomorphism on the level of π0

π0(M(SL(2,R)) tM(U(1))M(SU(2))) ∼= π0(M(SL(2,C))).

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT



The Borel transform and complex Chern-Simons theory

Introduce the rational function

G(z) =

∏n
j=1

(
z
P
pj − z−

P
pj

)

(zP − z−P )n−2 = (−1)n
∞∑

m=1

χmz
m ∈ Z[[z]].

Theorem 5 (A. & Mistegaard)

1 Set c =
√

2πiP . The Borel transform B(Z0) is the function

B(Z0)(ζ) =
4c

πi
√
ζ
G

(
exp

(
c
√
ζ

P

))
.

2 Let Ω be the set of poles of B(Z0). Then

CS∗C(X) =
i

2π
Ω mod Z.
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√
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(
c
√
ζ

P

))
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The resurgence formula Ẑ0 = L ◦ B(Z0)

Theorem 6 (A. & Mistegaard)

Set q = exp(2πiτ), τ ∈ H. We have

Ẑ0(q) =
1√
τ

∫

Γ
exp

(
− ξ
τ

)
B(Z0)(ξ) d ξ =

∞∑

m=1

χmq
m2

4P .

R

iR

Figure: The integration contour Γ.
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The asymptotic expansion of Ẑ0

For small t > 0 set qk,t = exp

(
2πi

k−i 2Pt
π

)
∈ h.

Theorem 7 (A. & Mistegaard)

For each θ ∈ CS∗C(X) ∃ a polynomial in k of degree at most n− 3
with coefficients in formal power series without constant terms

Žθ(k, t) ∈ t ·Q[πi, k][[t]]

giving an asymptotic expansion for small t and fixed even k

Ẑ0(X; qk,t) ∼
t→0

τk(X) +
∑

θ∈CS∗C(X)

e2πikθŽθ(k, t).

In particular the radial limit conjecture holds for X.
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A resurgence formula for τk

Our proof of the asymptotic expansion is based on the following
resurgence lemma where Ω is the set of poles of B(Z0)

Lemma 8 (A. & Mistegaard)

Ẑ0(q) = LR+ ◦ B(Z0)

(
1

τ

)
+
∑

ω∈Ω

Resy=ω(e−y/τB(Z0)(y)).

As a corollary of this and the radial limit theorem, we obtain the
following resurgence formula for the WRT quantum invariant

Corollary 9 (A. & Mistegaard)

τk = LR+ ◦ B(Z0)(k) +
∑

ω∈Ω

Resy=ω(e−kyB(Z0)(y)).
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Hyperbolic surgeries on the figure 8 knot

We now present in more detail the analysis leading to the above
results for the hyperbolic 3-manifolds

M(41(p/s)) = Mp/s

with surgery link giving by the figure eight knot with framing p/s.

Figure: Figure eight knot 41
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Faddeev’s quantum dilogarithm

Recall Faddeev’s quantum dilogarithm with parameter
γ = π/k ∈ (0, 1)

Sγ(z) = exp

(
1

4

∫

C̃

ezy

sinh(πy) sinh(γy)y
d y

)
.

for |Re(z)| < γ + π, and

C̃ = (−∞,−1/2) ∪∆ ∪ (1/2,∞)

where ∆ is a sufficiently small half-circle from −ε to ε in the upper
half plane (ε > 0 small enough).
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Contour integral formula for the WRT-Invariant

Choose c, d ∈ Z with rd− cs = 1. Define

χn,k(x, y) = sin
(π
s

(x− nd)
)
e

2πik
(
dn2

s
+ r

4s
x2−n

s
x−xy

)

× Sγ (−π + 2π(x− y))

Sγ (−π + 2π(x+ y))
cot(πkx) tan(πky).

Joint with Hansen we proved

τk(Mr/s) = νkqµ
∑

n∈Z/|s|Z

∫

C1(k)×C2(k)
χn,k(x, y) d y dx

where ν, µ ∈ C∗ and C1(k) is a simple closed contour which
encircles the set {m/k : m = 1, 2, ..., k − 1}, and C2(k) is a simple
closed contour encircling {(m+ 1/2)/k : m = 0, 1, ..., k − 1}.
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Contour integral formula for the WRT-Invariant

Define

χ̃n,k(x, y) = sin
(π
s

(x− nd)
)
e

2πik
(
dn2

s
+ r

4s
x2−n

s
x−xy

)

× Sγ (−π + 2π(x− y))

Sγ (−π + 2π(x+ y))
s(x, y).

where
s(x, y) = sign(Im(x))sign(Im(ȳ))i2

Theorem 10 (A. & Mistegaard)
∣∣∣∣
∫

C1(k)×C2(k)
(χn,k(x, y)− χ̃n,k(x, y)) d y dx

∣∣∣∣ = O(
1

k
)

This follows since | cot(πkx) tan(πky)− s(x, y)| decays
exponentially in |Im(x)|, |Im(y)| > 1

πk . But it is technical and
involves understanding good estimates for Sγ and Li2.
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Semi-classical expansion of the quantum dilog

The semiclassical asymptotics of Sγ is given by Euler’s dilogarithm:
For ζ ∈ {Re(z) < π} we have

Sγ(ζ) = exp

(
k

2πi
Li2

(
−eiζ

)
+ Iγ(ζ)

)
,

Iγ(ζ) =
1

4

∫

C̃

ezζ

z sinh(πz)

(
1

sinh(γz)
− 1

γz

)
d z.

This leads us to the following phase functions indexed by
α, β ∈ {0, 1} and n ∈ Z/|s|Z

Φα,β
n (x, y) =

Li2(e2πi(x+y))− Li2(e2πi(x−y))

4π2

− dn2

s
+ (− r

4s
x+

n

s
+ y + α+ β)x+ y(α− β).
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Identification of classical complex Chern-Simons values

Theorem 11 (A. & Hansen)

There exists a surjection

(x, y) 7→ [ρx,y]

from the set of critical points (x, y) of the phase functions Φα,β
n

with x /∈ Z ontoM∗(Mr/s, SL(2,C)). Moreover, we have that

Φα,β
n (x, y) = SCS([ρx,y]) mod Z.
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A resurgence Theorem

Based on generalizations of resurgence results for Laplace integrals
due to Malgrange and Pham we prove

Theorem 12 (A. & Mistegaard)

There exists resurgent power series

{Zθ(x)}θ∈CS ⊂ x−1C[[x−1]]

giving a full asymptotic expansion

τk(M1/p) ∼k→∞ k
∑

θ∈CS

e2πikθ Zθ(k).

Each Borel transform B(Zθ) is resurgent with singularities

Ω(θ) = −2πiCSC +2πiθ + 2πiZ.
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Resurgence Analysis of Meromorphic Transformations
Nov. 2. arXiv:2011.01110

• W ⊂ C open connected subset
• K ∈M(W × C) meromorphic kernel.

Kw = K|w×C PKw = pol divisor of Kw

• Γw ⊂ C− PKw contour
• γ ∈ U ⊂ C, open connected subset 0 ∈ Ū − U
• f ∈M(C) fγ(z) = f(γz) Γw ⊂ C− (PKw ∪ Pfγ )

gγ(w) =

∫

Γw

K(w, z)fγ(z)dz

AγK,Γ :MK,Γ(C)→ O(W ), AγK,Γ(f) = gγ

Want to understand the asymptotics of the transforms
AγK,Γ as γ → 0.

Ex: Fourier transform, Laplace transform, Mellin transform, ...
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Faddeev’s quantum dilogarithm Sγ

We let

KF (w, z) =
ewz

sinh(πz)z
and fF (z) =

1

sinh(z)

and
Sγ(w) = exp(

1

4
gFγ (w)) ∀(w, γ) ∈ W̃F × ŨF

where
gFγ (w) =

∫

R+iε

ewz

sinh(πz)z

1

sinh(γz)
dz

and

W̃F = {w ∈ C | |Re(w)| < π+|Re(γ)|}, ŨF = {γ ∈ C | Re(γ) > 0}

where Sγ ∈M(C) is Faddeev’s quantum dilogarithm.
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The Gamma function Γ

We now let

KΓ(w, z) =
ie(w−1) log(−z)

2 sin(πz)
and fΓ(z) = e−z

and
ΓΓ
w = {z ∈ C | d(z,R+) = ε}

oriented from ∞+ iε to ∞− iε. We then have that

Γγ(w) = gΓ
γ (w)

where Γ1 is Euler’s Gamma function.
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One over the Gamma function 1
Γ

We now let

K 1
Γ

(w, z) =
1

2πi
e−w log(z) and f 1

Γ
(z) = ez

and
Γ

1
Γ
w = {z ∈ C | d(z,R−) = ε}

oriented from −∞− iε to −∞+ iε. We then have that

1

Γγ(w)
= g

1
Γ
γ (w).
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Riemann zeta function ζ

We set

Kζ(w, z) = −Γ(1− w)e(w−1) log(z)

2πi
and fζ(z) =

1

ez − 1

and
Γζw = {z ∈ C | d(z,R+) = ε}

oriented from −∞− iε to −∞+ iε. We then have that

ζγ(w) = gζγ(w)

where ζ = ζ1.
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Gauss hypergeometric function 2F1

We set

K2F1(w, z) = ez log(−w) and f2F1(z) =
Γ(−z)Γ(z + a)Γ(z + b)

Γ(z + c)

and
Γ2F1
w = iR

with the orientation induced from the usual one on R. Then

Γ(a)Γ(b)

Γ(c)
2F

γ
1 (a, b; c;w) =

1

2πi
g2F1
γ (w)

with 2F
1
1 (a, b; c;w) = 2F1(a, b; c;w) Gauss hypergeometric

function.
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We consider the asymptotic expansion transform.
Assume

hm(w) =

∫

Γw

K(w, z)zmdz.

exist for all m ∈ Z.
Then define

Ãγ,nK,Γ :MK,Γ(C)→ O(W )[γ−1, γ]]

given by

Ãγ,nK,Γ(f)(w) =

∞∑

m=−n0

amhm(w)γm,

where the Laurent series of f at zero is (n0 pol order of f at zero)

f(z) =

∞∑

m=−n0

amz
m
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Assumption on Γ and estimates on K and f

• Γ̃w deformation of Γw in C− (PKw ∪ Pfγ − {0})
• Γ̃w consist of d smooth arc segments Γ̃w,j , j = 1, . . . , d.
• Θ(z) = angle between the line through zero and z and tangent
line to Γ̃w,j at z.

• ∃ b > 0 :

| cos(Θ(z))| ≥ b, ∀z ∈ Γ̃w,j , j = 1, . . . d.

• ∃ δ > 0, c > 0, cw > 0, w ∈W and c̃γ > c, γ ∈ U :

| K(w, z) |≤ cwe−δ|z||z|−k0 ∀(w, z) ∈W × (Γ̃w − {0})

|fγ(z)| ≤ c̃γ |γz|−n0 ∀(γ, z) ∈ U × (Γ̃w − {0}).
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An example of an allowed Γ̃w with indication of Θ(z) at some
z ∈ Γ̃w.
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Theorem 13 (A.)

There is an asymptotic expansion in the Poincare sense to all orders

AγK,Γ(f) ∼ ÃγK,Γ(f).

Estimate: For all n ≥ k0 − 1 there exist Cn

| AγK,Γ(f)(w)−Ãγ,nK,Γ(f)(w) |≤ Cncw c̃γ |γ|n+1δ−(n−k0+2)(n−k0+2)!

for all (w, γ) ∈W × U .

Ck0−1 =
d

bc
c
′
k0−1, Cn =

d

bc
√
n− k0 + 1

c
′
n, n ≥ k0

c
′
n = inf

0<r<Rf

1

rn+1

(
cr−n0

n− k0 + 2
+ k(r)

)
, n ≥ k0 − 1

k(r) =
∞∑

m=−n0

|am|rm, r ∈ (0, Rf ),

Rf = dist(0, Pf − {0}).
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Borel resummation of the (divergent) series ÃγK,Γ(f) in γ.
• g−γ ∈M(U)[γ]

g−γ (w) =

k0−1∑

m=−n0

amhm(w)γm,

• g+ ∈ γM(U)[[γ]]

g+
γ (w) =

∞∑

m=k0

amhm(w)γm.

• Borel transform

B : γO(U)[[γ]]→ O(U)[[ξ]]

determined by

B(γm) =
ξm−1

(m− 1)!

and formally extended linearly over O(U).
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Let R+
θ = eiθR+ for θ ∈ R

Lθ(ψ)(γ) =

∫

R+
θ

e−ξ/γψ(ξ)dξ

well defined if
|ψ(ξ)| ≤ Ceα|ξ|,∀ξ ∈ R+

θ

and
α < Re(γ) cos θ + Im(γ) sin θ.

• Lθ ◦ B(γm) = γm ∀m ∈ Z+ when ever Lθ(γm) is defined.
• Let ϕ ∈M(C) be

ϕ(z) = f(z)−
k0−1∑

m=−n0

amz
m ϕz(γ) = ϕ(γz).
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Theorem 14 (A.)

• If ∃ θ, α ∈ R, 0 < β < δ, C > 0 : Well def. L−1
θ (ϕz), z ∈ Γ̃w,

|L−1
θ (ϕz)(ξ)| ≤ Ceα|ξ|+β|z||z|k0 ∀(z, ξ) ∈ Γ̃w × Vw,θ, ∀w ∈W

Vw,θ ⊂ C open containing the half line R+
θ .

• Then g+
γ is Borel summable and

Bw(ξ) = B(g+
γ (w))(ξ), Bw ∈ O(Vw,θ)

Bw(ξ) =

∫

Γ̃w

K(w, z)L−1
θ (ϕz)(ξ)dz.

gγ(w) = g−γ (w) + Lθ(Bw)(γ) ∀γ ∈ Uθ,α.
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Let now the principal part of ϕ at p ∈ Pϕ be denoted

ϕ̃z,p(γ) =

nϕ∑

m=1

bp,m
(γz − p)m ,

where we assume that the pole order is universally bounded by
some integer nϕ independent of z ∈ Γ̃w and w ∈W . We observe
that if we let

ϕ̃′z,p(γ) =

nϕ∑

m=1

bp,m
pm

(−1)m
m−1∑

l=0

(
m

l

)(
z

p

)m−l
(
z
p

)m−l

( 1
γ − z

p)m−l

then

ϕ̃z,p(γ) =

nϕ∑

m=1

bp,m
pm

(−1)m + ϕ̃′z,p(γ).
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We will assume that there exist an ordering on Pϕ such that the
series

ϕ̃′z(γ) =
∑

p∈Pϕ

ϕ̃′z,p(γ)

with respect to that ordering is uniformly absolutely convergent on

Oε = C− ∪p∈PϕD(p, ε)

for some ε > 0 and there exist an entire function ψz parametriced
by z ∈ Γ̃w and w ∈W such that

ϕz(γ) = ϕ̃′z(γ) + ψz(γ) ∀γ ∈ Oε.

We will see in examples that one actually sometimes get that
ψz = 0, but in general we will simply assume that L−1

θ (ψz) exist for
all z ∈ Γ̃w and w ∈W .
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Theorem 15 (A.)
Assume that exists θ, α ∈ R, 0 < β < δ and a constant Cψ , such that for all w ∈ W we have that

|L−1
θ (ψz)(ξ)| ≤ Cψe

α|ξ|+β|z||z|k0 ∀(z, ξ) ∈ Γ̃w × Vw,θ,

where Vw,θ ⊂ C is an open subset containing the half line R+
θ

. Assuming further that

∫
R+
θ

∑
p∈Pφ

nϕ∑
m=1

|bp,m|
|p|2m−1

∫
Γ̃w

∣∣∣∣e−ξ/γK(w, z)e
zξ
p

∣∣∣∣ (| z
p
| + |ξ|

)m−1
|dz||dξ| <∞

and that

1

|γ|2

(
Re(γ)
Im(γ)

)
·
(

cos θ
sin θ

)
>

1

|p|2

(
Re(p) Im(p)
Im(p) −Re(p)

)(
Im(z)
Re(z)

)
·
(

cos θ
sin θ

)
> 0

for all p ∈ Pφ and z ∈ Γ̃w , w ∈ W .

Then we have for all (w, ξ) ∈ W × Vw,θ that

Bw(ξ) =
∑
p∈Pϕ

(∫
Γ̃w

K(w, z)e
zξ
p dz

) nϕ∑
m=1

bp,m

pm
(−1)

m
m−1∑
l=0

(
m

l

)(
z

p

)m−l ξm−l−1

(m− l− 1)!

+

∫
Γ̃w

K(w, z)L−1
θ (ψz)(ξ)dz.
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Resurgence properties and Stokes phenomenon of Bw
• Lθ(Bw) constant in θ on sectors where Bw has no poles
• Jump when R+

θ hits poles of Bw
• Jumps θJw = {θj | j ∈ Jw} index by a set Jw, w ∈W .
• Let the jump at θj be denote ∆θj (Lθ(Bw)).

Theorem 16 (A.)

Under the above assumptions we have that

∆θj (Lθ(Bw)) = 2πi
∑

p∈PBw∩e
iθjR+

Resξ=p(e
−ξ/γBw(ξ))

provided Bw decays sufficiently fast in a small sector around R+
θ ,

j ∈ Jw, w ∈W .
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We let

KF (w, z) =
ewz

sinh(πz)z
and fF (z) =

1

sinh(z)

and
Sγ(w) = exp(

1

4
gFγ (w)) ∀(w, γ) ∈ W̃F × ŨF

where
gFγ (w) =

∫

R+iε

ewz

sinh(πz)z

1

sinh(γz)
dz

and

W̃F = {w ∈ C | |Re(w)| < π+|Re(γ)|}, ŨF = {γ ∈ C | Re(γ) > 0}

where Sγ ∈M(C) is Faddeev’s quantum dilogarithm.
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We observe that k0 = 2 and n0 = 1 and further that RfF = π.
Laurent series for fF convergent in D(0, π) is

fF (z) =

∞∑

m=0

2(1− 22m−1)B2m

(2m)!
z2m−1 ∀z ∈ D(0, π),

where B2m is the 2m’th Bernoulli number. Let

Pnγ (w) =
1

4

n∑

m=0

2(1− 22m−1)B2m

(2m)!
γ2m−1

∫

R+iε

ewz

sinh(πz)z
z2m−1dz.

1

2i
Li2(−eiw) =

1

4

∫

R+iε

ewz

sinh(πz)z2
dz

1

2i

(
∂

∂w

)2m

Li2(−eiw) =

∫

R+iε

ewz

sinh(πz)z
z2m−1dz

Pnγ (w) =
1

2i

2n∑

m=0

2(1− 22m−1)B2m

(2m)!

(
∂

∂w

)2m

Li2(−eiw).
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For θ ∈ (−π
2 ,

π
2 ) we let

Γ̃Fθ = eiθ(−∞, 0] ∪ eiθ[0,∞).

(so dF = 2)

W
F
θ =

{
w ∈ C

∣∣∣∣− π cos θ + δ <

(
Re(w)
Im(w)

)
·
(

cos θ
− sin θ

)
< π cos θ − δ

}

and

U
F
θ =

{
γ ∈ C

∣∣∣∣θ − π

2
< Arg(γ) <

π

2
+ θ

}
=

{
γ ∈ C

∣∣∣∣ (Re(γ)
Im(γ)

)
·
(

cos θ
sin θ

)
> 0

}

This definition of UFθ guarantees that the poles of fFγ , which are all
on the imaginary axis, when γ is positive real, never crosses Γ̃Fθ as
the absolute value of the argument of γ grows from zero to π, not
including π. We observe that

Re(γ) cos θ(γ) 6= Im(γ) sin θ(γ)

for all γ ∈ UFθ .
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Application to Faddeev’s quantum Dilog.

Theorem 17 (A.)

We have the following estimates for all positive integers n

| Log(Sγ(w))− Pnγ (w) |≤ C̃F2n|γ|2nδ−2n−1(2n)!

for all (w, γ) ∈WF
θ × UFθ and all θ ∈ (−π

2 ,
π
2 ) where

C̃
F
2n =

24
(

2
π

)2n+1
|γ|

√
2n− 1(1− e−2π cos θ)(Re(γ) cos θ − Im(γ) sin θ)

.

This is similar, but not identical, to the estimates obtained by
Garoufalidis and Kashaev, using advanced techniques from the
theory of resurgence, in the case where Re(γ) > 0, e.g. in the case
our θ = 0. Ours is more general, since it does not require that
Re(γ) > 0, in fact, we see that as we vary θ ∈ (−π

2 ,
π
2 ) the above

theorem applies to all γ ∈ C− R−.
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We recall that for all z ∈ C− iπZ

1

sinh(z)
=

1

z
+

∞∑

n=1

(
(−1)n

z − iπn +
(−1)n

z + iπn

)
=

1

z
+ 2

∞∑

n=1

(−1)nz

z2 + π2n2
,

where the last series converges uniformly on

Oε = C− tn∈Z−{0}D(iπn, ε)

for all ε > 0. Thus

ϕFz (γ) =
1

sinh(γz)
− 1

γz
=

2z

π2

∞∑

n=1

(−1)n

n2

1
γ

( 1
γ )2 + ( z

πn)2

converges uniformly in

γ ∈ Oε,z = C− tn∈Z−{0}D(
iπn

z
, ε)

for ε > 0 and z 6= 0.
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For
1

|γ|2
(
Re(γ)
Im(γ)

)
·
(

cos θ
sin θ

)
>

1

π

∣∣∣∣
(
Im(z)
Re(z)

)
·
(

cos θ
sin θ

) ∣∣∣∣

we immidiately check that

L−1
θ (

1
γ

( 1
γ )2 + ( z

πn)2
)(ξ) = cos(

ξz

πn
).

since

Lθ(cos(
ξz

πn
))(γ) =

∫

Rθ+
e−ξ/γ cos(

ξz

πn
)dξ =

1

2

(
1

1
γ + i zπn

+
1

1
γ − i zπn

)

and so

L−1
θ (ϕFz )(ξ) =

2z

π2

∞∑

n=1

(−1)n

n2
cos(

ξz

πn
).
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So we get that

Bw(ξ) =

∫

ΓFw

KF (w, z)L−1(ϕFz )(ξ)dz =

2

π2

∞∑

n=1

(−1)n

n2

(∫

ΓF,γw

e(w+i ξ
πn

)z

sinh(πz)
dz +

∫

ΓF,γw

e(w−i ξ
πn

)z

sinh(πz)
dz

)

Let

Vw,θ =

{
ξ ∈ C

∣∣∣∣
(
π − Re(w)
Im(w)

)
·
(

cos θ
sin θ

)
>

1

π

∣∣∣∣
(
Im(ξ)
Re(ξ)

)
·
(

cos θ
sin θ

) ∣∣∣∣
}
.

recall

1

1 + e−iw
=
i

2

∫

ΓFw

ewz

sinh(πz)
dz.

Jørgen Ellegaard Andersen Resurgence analysis of the WRT-TQFT



Theorem 18 (A.)

For all 0 < δ < π cos θ, θ ∈ (−π
2 ,

π
2 ), w ∈WF

θ and ξ ∈ Vw,θ we
have that

Bw(ξ) =
2

iπ2

∞∑

n=1

(−1)n

n2

(
1

1 + e−i(w+i ξ
πn

)
+

1

1 + e−i(w−i
ξ
πn

)

)

This formula matches the one obtained by Garoufalidis and Kashaev
in the special case where θ = 0, e.g. in the case where Re(γ) > 0.
From this formula we can obtain the Stokes coefficients by the
residue theorem.
We observe that Bw actually extends to a meromorphic function on
all of C, e.g. Bw ∈M(C) for all

w ∈ C− (π + 2πZ).

Furthermore its poles are

PBw = ±iπZ+(π − w + 2πZ).
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Thank you very much for your attention!
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