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The hidden structure of
perturbation theory

Perturbation theory in a small parameter remains one of the
most fruitful approaches to quantum theories.

Thanks to the theory of resurgence, we have learned that a
perturbative series encodes much more information than
originally thought. By an appropriate decoding of such a series,
one can find e.g. additional sectors of the path integral.

This decoding involves beautiful and challenging mathematics,
in which one passes from formal power series to analytic
complex functions and their underlying geometry.



As | will show in this talk, the resurgent structure of
perturbative series involves in some cases a hidden
integrality structure which can be physically interpreted in
terms of counting BPS states in a “dual” theory.

Two very interesting examples of such a situation are complex
Chern-Simons theory and topological string theory.

This is based on 2007.10190 and in progress with
Stavros Garoufalidis and Jie Gu (for knots), as well as
work in progress with Jie Gu (for topological strings).




The Borel triangle

The Borel method is a systematic (and traditional) way of making
sense of factorially divergent formal power series

: ) |Borel transform| [ a, R
mn A

o= 0 [50=3 e

. n >0 ) . n>0 y

Laplace transform

( . 50 )
5(9)(2) = / e CB(20)dC

\— _J

Borel resummation




The Borel transform (() is analytic at the origin.Very
often it can be analytically continued to the complex plane,
displaying a set of singularities (poles, branch cuts)

Borel plane

N\

|
N
%




The expansion of the Borel transform around each singularity
leads to new formal power series. For so-called simple
resurgent functions, we have only log singularities:
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These new perturbative series are typically associated to
new sectors of the theory (e.g. expansions around different
saddle points)



We can repeat the same analysis for all these new functions.
We conclude that, starting from a perturbative series, we
generate a set of formal power series, corresponding to
the different sectors of the path integral, and a matrix of
Stokes constants
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Extracting all this information in a given physical theory is not
easy, to put it mildly.

Stokes constants are often complicated numbers. However, in

some cases they turn out to be integers. In simple examples

this has a geometric interpretation in terms of intersection of
integration paths (cf. Kontsevich’s talk)



Exact WKB and BPS states

In the exact WKB method, the formal power series are
(exponentiated) quantum periods, or Voros symbols
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The Stokes constants for this problem are integers that can be
computed with the exact WKB method [Voros, Ecalle, Delabaere-
Dillinger-Pham...] and they depend on the moduli of the curve.

Suppose that we can regard the VWKB curve . as a Seiberg-
Witten curve for a supersymmetric theory. One
consequence of the work of Gaiotto-Moore-Neitzke (GMN) is
that Stokes constants compute BPS multiplicities:
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Complex Chern-Simons theory

A rich source of perturbative series (and beautiful mathematics!) is
complex CS theory on a 3-manifold M.

When M is the complement of a hyperbolic knot K, it has been
argued that the partition function of the theory can be reduced to

a finite-dimensional “state integral® [Kashaev, Hikami, Dimofte et al,
Andersen-Kashaev]
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The building block of the integrand is Faddeev’s quantum
dilogarithm.We will focus on SL(2,C)



Saddle-points correspond to flat complex connections o on M.
The expansions around these connections have the form
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Among these connections there is always the “geometric
connection” g (corresponding to the geodesically complete
hyperbolic metric on M), and its conjugate c, with
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These saddle points lead to “classical” singularities
in the Borel plane.
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These “classical” singularities and their Stokes constants

(a finite number) were analyzed In e.g. [Gukov-M.M.-Putrov, Gang-
Hatsuda, Garoufalidis-Zagier]

It turns however that, due to multivaluedness of the CS
action and of the state integral potential, there are infinite
towers of additional singularities [Garoufalidis, Witten,
Gukov-M.M.-Putrov,...], corresponding to the “actions”
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The actual picture is rather
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Similar infinite towers of singularities appear in other contexts,
like topological string theory [Pasquetti-Schiappa, ...]



These towers correspond to tiny non-perturbative corrections
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We have, in principle, infinitely many Stokes constants, labeled
by a pair of flat connections and a pair of integers
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One might think that the towers of singularities are somewhat
“trivial” since they come from multivaluedness. Indeed, the
different formal power series have a simple multiplicative
structure
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The Stokes constants depend then on a single integer n
SJ,J’;n — SJ,J’;O,n

and explicit computations show that they provide
a highly non-trivial collection of
integer invariants of the knot!
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Can we find a systematic description of these integers!?
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This counts BPS states in a 3d SCFT “dual” to the hyperbolic
knot [Dimofte-Gaiotto-Gukov]



A more precise description involves the g-series appearing in
the “block decomposition” of the state integral [Garoufalidis-
Kashaev, Garoufalidis-Zagier] and generalizations thereof.

Consider the linear g-difference equation:
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Then, the “Stokes g-series”
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are given by explicit bilinear expressions in fundamental
solutions of the above equation



Explicit formulae

S~ lnn+1)4+nA
q2
p— —1 n

> in(n+1)+ni n j
Galg) =D (-1 2+ 2>\+E1(Q)+221+q-

n—0 (CI)n j=1 1 — q’
9+(q) = g90(q) 9-(q) = 91(q) +29-1(q)
G+(q) = Go(q) G_(q) = —Gi(q) — 2G—-1(q)

We have obtained similar explicit results for the 92 knot.



General conjectures

We conjecture that, for any hyperbolic knot:
. S,,(q) = DGG index —1
- g9
2.All the Stokes g-series are bilinear expressions in
solutions to a linear difference equation, which is in turn

determined by the “block decomposition” of the state
integral.

Related results have been recently announced by Kontsevich

“Stokes g-series” were previously calculated for SU(2) CS on
some Seifert Sspaces IN [Costin-Garoufalidis, Gukov-M.M.-Putrov]



Resurgent structures in topological
strings

It turns out that similar structures appear in topological string
theory on toric Calabi-Yau (CY) manifolds.

Given a toric CY X, we consider the partition function of the
topological string in the conifold frame
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We now define an infinite family of formal power series
(times an exponential)
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Motivation: due to the TS/ST correspondence [Grassi-Hatsuda-M.M.],
these series are, conjecturally, asymptotic expansions of
(fermionic) spectral traces of trace-class operators on the real
line
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These operators are obtained by “quantizing” the mirror
curve to X



What is the resurgent structure of these series?

It turns out that it is very similar in many cases to the one
found in complex CS theory.

A rich example which can be worked out in detail:
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“volume” V of the CY at the conifold point

This is the volume conjecture for toric CY
manifolds:
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It turns out that, as in the figure eight knot, there is another
formal power series involved in the resurgent structure for N=1
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In this case, the additional towers of additional singularities
are located at w1
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We still don’t know the physical or mathematical
interpretation of these integers, which are certainly part
of the topological string package. Relation to other approaches

to resurgence in topological string theory!? [Couso-Santamaria et al.,
Couso-Santamaria-M.M.-Schiappa]



Conclusions and open questions

Resurgence can be used to extract precious information from
perturbative series. In some cases, it leads to non-trivial
integer invariants. This is a new route to integrality, different
from previous ones (like radial asymptotics of g-series).

Our results determine (at least conjecturally) the complete
resurgent structure of complex Chern-Simons theory for
hyperbolic knots, and indicate a close relationship between
Stokes constants and BPS counting in the “dual” 3d theory.

The same structures appear in topological string theory on
toric CY manifolds, but it is not clear what is the enumerative
meaning of the resulting integers. Determining the different
sectors is also harder



Many open questions:
) What happens if we turn on deformations of the
hyperbolic structure? Do we find then a clearer relation

to the A-polynomial and the AJ conjecture!?

2) Can we obtain these results from a WKB analysis of the A-
polynomial, a la GMN?

3) Can we reformulate the state integral invariants in terms of
a Riemann-Hilbert problem?

4) Can we prove our conjectures or justify them physically?

5) Can we develop a similar theory for topological strings on
toric CYs!?



Thank you for your attention!



